Yazar "Akbar, Noor" seçeneğine göre listele
Listeleniyor 1 - 14 / 14
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Anti-amoebic activity of a series of benzofuran/benzothiophene derivatives against acanthamoeba castellanii belonging to the T4 genotype(2022) Akbar, Noor; El-Gamal, Mohammed, I; Zaraei, Seyed-Omar; Saeed, Balsam Qubais; Khan, Naveed Ahmed; Siddiqui, RuqaiyyahAims: To determine the anti-amoebic activity of benzofuran/benzothiophene-possessing compounds against Acanthamoeba castellanii of the T4 genotype. Method and results: A series of benzofuran/benzothiophene-possessing compounds were tested for their anti-amoebic activities, in particular, to block encystation and excystation processes in amoebae. Cytotoxicity of the compounds were evaluated using lactate dehydrogenase (LDH) assays. The amoebicidal assay results revealed significant anti-amoebic effects against A. castellanii. Compounds 1p and 1e showed the highest amoebicidal activity, eliminating 68% and 64% of the amoebae, respectively. These compounds remarkably repressed both the encystation and excystation processes in A. castellanii. Furthermore, the selected compounds presented minimal cytotoxic properties against human cells, as well as considerably abridged amoeba-mediated cytopathogenicity when compared to the amoebae alone. Conclusions: Our findings show that benzofuran/benzothiophene derivatives depict potent anti-amoebic activities; thus these compounds should be used as promising and novel agents in the rationale development of therapeutic strategies against Acanthamoeba infections.Öğe The anti-amoebic potential of carboxamide derivatives containing sulfonyl or sulfamoyl moieties against brain-eating Naegleria fowleri(Springer, 2023) Akbar, Noor; Siddiqui, Ruqaiyyah; El-Gamal, Mohammed I.; Zaraei, Seyed-Omar; Alawfi, Bader S.; Khan, Naveed AhmedNaegleria fowleri is a free-living thermophilic flagellate amoeba that causes a rare but life-threatening infection called primary amoebic meningoencephalitis (PAM), with a very high fatality rate. Herein, the anti-amoebic potential of carboxamide derivatives possessing sulfonyl or sulfamoyl moiety was assessed against pathogenic N. fowleri using amoebicidal, cytotoxicity and cytopathogenicity assays. The results from amoebicidal experiments showed that derivatives dramatically reduced N. fowleri viability. Selected derivatives demonstrated IC50 values at lower concentrations; 1j showed IC50 at 24.65 mu M, while 1k inhibited 50% amoebae growth at 23.31 mu M. Compounds with significant amoebicidal effects demonstrated limited cytotoxicity against human cerebral microvascular endothelial cells. Finally, some derivatives mitigated N. fowleri-instigated host cell death. Ultimately, this study demonstrated that 1j and 1k exhibited potent anti-amoebic activity and ought to be looked at in future studies for the development of therapeutic anti-amoebic pharmaceuticals. Further investigation is required to determine the clinical relevance of our findings.Öğe Antiamoebic properties of ceftriaxone and zinc-oxide-cyclodextrin-conjugated ceftriaxone(MDPI, 2022) Makhlouf, Zinb; Akbar, Noor; Khan, Naveed Ahmed; Shah, Muhammad Raza; Alharbi, Ahmad M.; Alfahemi, Hasan; Siddiqui, RuqaiyyahAcanthamoeba castellanii is a ubiquitous free-living amoeba capable of instigating keratitis and granulomatous amoebic encephalitis in humans. Treatment remains limited and inconsistent. Accordingly, there is a pressing need for novel compounds. Nanotechnology has been gaining attention for enhancing drug delivery and reducing toxicity. Previous work has shown that various antibiotic classes displayed antiamoebic activity. Herein, we employed two antibiotics: ampicillin and ceftriaxone, conjugated with the nanocarrier zinc oxide and beta-cyclodextrin, and tested them against A. castellanii via amoebicidal, amoebistatic, encystment, excystment, cytopathogenicity, and cytotoxicity assays at a concentration of 100 mu g/mL. Notably, zinc oxide beta-cyclodextrin ceftriaxone significantly inhibited A. castellanii growth and cytopathogenicity. Additionally, both zinc oxide beta-cyclodextrin ceftriaxone and ceftriaxone markedly inhibited A. castellanii encystment. Furthermore, all the tested compounds displayed negligible cytotoxicity. However, minimal anti-excystment or amoebicidal effects were observed for the compounds. Accordingly, this novel nanoconjugation should be employed in further studies in hope of discovering novel anti-Acanthamoeba compounds.Öğe Antiamoebic properties of Methyltrioctylammonium chloride based deep eutectic solvents(Elsevier Ltd., 2022) Siddiqui, Ruqaiyyah; Makhlouf,Zinb; Akbar, Noor; Khamis, Mustafa; Ibrahim, Taleb; Khan, Amir Sada; Khan, Naveed AhmedAntiamoebic properties of Methyltrioctylammonium chloride based deep eutectic solventsÖğe Antibacterial effects of quercetagetin are significantly enhanced upon conjugation with chitosan engineered copper oxide nanoparticles(Springer, 2024) Alvi, Adeelah; Alqassim, Saif; Khan, Naveed Ahmed; Khatoon, Bushra; Akbar, Noor; Kawish, Muhammad; Faizi, ShaheenThe development of antibiotic alternatives that entail distinctive chemistry and modes of action is necessary due to the threat posed by drug resistance. Nanotechnology has gained increasing attention in recent years, as a vehicle to enhance the efficacy of existing antimicrobials. In this study, Chitosan copper oxide nanoparticles (CHI-CuO) were synthesized and were further loaded with Quercetagetin (QTG) to achieve the desired (CHI-CuO-QTG). Size distribution, zeta potential and morphological analysis were accomplished. Next, the developed CHI-CuO-QTG was assessed for synergistic antibacterial properties, as well as cytotoxic attributes. Bactericidal assays revealed that CHI-CuO conjugation showed remarkable effects and enhanced QTG effects against a range of Gram + ve and Gram - ve bacteria. The MIC50 of QTG against S. pyogenes was 107 mu g/mL while CHI-CuO-QTG reduced it to 9 mu g/mL. Similar results were observed when tested against S. pneumoniae. Likewise, the MIC50 of QTG against S. enterica was 38 mu g/mL while CHI-CuO-QTG reduced it to 7 mu g/mL. For E. coli K1, the MIC50 of QTG was 42 mu g/mL while with CHI-CuO-QTG it was 23 mu g/mL. Finally, the MIC50 of QTG against S. marcescens was 98 mu g/mL while CHI-CuO-QTG reduced it to 10 mu g/mL. Notably, the CHI-CuO-QTG nano-formulation showed limited damage when tested against human cells using lactate dehydrogenase release assays. Importantly, bacterial-mediated human cell damage was reduced by prior treatment of bacteria using drug nano-formulations. These findings are remarkable and clearly demonstrate that drug-nanoparticle formulations using nanotechnology is an important avenue in developing potential therapeutic interventions against microbial infections.Öğe Antibacterial Properties of Ethacridine Lactate and Sulfmethoxazole Loaded Functionalized Graphene Oxide Nanocomposites(Mdpi, 2023) Jabri, Tooba; Khan, Naveed Ahmed; Makhlouf, Zinb; Akbar, Noor; Gul, Jasra; Shah, Muhammad Raza; Siddiqui, RuqaiyyahThe emergence of drug-resistant bacterial strains that reduce the effectiveness of antimicrobial agents has become a major ongoing health concern in recent years. It is therefore necessary to find new antibacterials with broad-spectrum activity against both Gram-positive and Gram-negative bacteria, and/or to use nanotechnology to boost the potency of already available medications. In this research, we examined the antibacterial efficacy of sulfamethoxazole and ethacridine lactate loaded two-dimensional glucosamine functionalized graphene-based nanocarriers against a range of bacterial isolates. Graphene oxide was first functionalized with glucosamine, which as a carbohydrate moiety can render hydrophilic and biocompatible characters to the GO surface, and subsequently loaded with ethacridine lactate and sulfamethoxazole. The resulting nanoformulations had distinct, controllable physiochemical properties. By analyzing the formulation using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (PXRD), a thermogravimetric analysis (TGA), zetasizer, and a morphological analysis using Scanning Electron Microscopy and Atomic Force Microscopy, researchers were able to confirm the synthesis of nanocarriers. Both nanoformulations were tested against Gram-negative bacteria, including Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica, as well as Gram-positive bacteria, including Bacillus cereus, Streptococcus pyogenes, and Streptococcus pneumoniae. Importantly, ethacridine lactate and its nanoformulations exhibited significant antibacterial properties against all bacteria tested in this study. When tested for minimum inhibitory concentration (MIC), the results were remarkable and revealed that ethacridine lactate presented MIC90 at 9.7 mu g/mL against S. enteric, and MIC90 at 6.2 mu g/mL against B. cereus. Notably, ethacridine lactate and its nanoformulations showed limited toxicity effects against human cells using lactate dehydrogenase assays. Overall, the results revealed that ethacridine lactate and its nanoformulations possess antibacterial activities against various Gram-negative and Gram-positive bacteria and that nanotechnology can be employed for the targeted delivery of effective drugs without harming the host tissue.Öğe Antimicrobial Activity of Novel Deep Eutectic Solvents(Mdpi, 2023) Akbar, Noor; Khan, Naveed Ahmed; Ibrahim, Taleb; Khamis, Mustafa; Khan, Amir Sada; Alharbi, Ahmad M.; Alfahemi, HasanHerein, we utilized several deep eutectic solvents (DES) that were based on hydrogen donors and hydrogen acceptors for their antibacterial application. These DES were tested for their bactericidal activities against Gram-positive (Streptococcus pyogenes, Bacillus cereus, Streptococcus pneumoniae, and methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli K1, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens) bacteria. Using lactate dehydrogenase assays, DES were evaluated for their cytopathic effects towards human cells. Results from antibacterial tests revealed that DES prepared from the combination of methyl-trioctylammonium chloride and glycerol (DES-4) and DES prepared form methyl-trioctylammonium chloride and fructose (DES-11) at a 2 mu L dose showed broad-spectrum antibacterial behavior and had the highest bactericidal activity. Moreover, DES-4 showed 40% and 68% antibacterial activity against P. aeruginosa and E. coli K1, respectively. Similarly, DES-11 eliminated 65% and 61% E. coli K1 and P. aeruginosa, respectively. Among Gram-positive bacteria, DES-4 showed important antibacterial activity, inhibiting 75% of B. cereus and 51% of S. pneumoniae. Likewise, DES-11 depicted 70% B. cereus and 50% S. pneumoniae bactericidal effects. Finally, the DES showed limited cytotoxic properties against human cell lines with the exception of the DES prepared from Methyltrioctylammonium chloride and Citric acid (DES-10), which had 88% cytotoxic effects. These findings suggest that DES depict potent antibacterial efficacies and cause minimal damage to human cells. It can be concluded that the selected DES in this study could be utilized as valuable and novel antibacterial drugs against bacterial infections. In future work, the mechanisms for bactericides and the cytotoxicity effects of these DES will be investigated.Öğe Azole and 5-nitroimidazole based nanoformulations are potential antiamoebic drug candidates against brain-eating amoebae(Oxford Univ Press, 2023) Akbar, Noor; Hussain, Kashif; Khalid, Maria; Siddiqui, Ruqaiyyah; Shah, Muhammad Raza; Khan, Naveed AhmedAim Herein, the anti-parasitic activity of azoles (fluconazole and itraconazole) and 5-nitroimdazole (metronidazole) against the brain-eating amoebae: Naegleria fowleri and Balamuthia mandrillaris was elucidated. Methods and results Azoles and 5-nitroimidazole based nanoformulations were synthesized and characterized using a UV-visible spectrophotometer, atomic force microscopy, and fourier transform infrared spectroscopy. H-1-NMR, EI-MS, and ESI-MS were performed to determine their molecular mass and elucidate their structures. Their size, zeta potential, size distribution, and polydispersity index (PDI) were assessed. Amoebicidal assays revealed that all the drugs and their nanoformulations, (except itraconazole) presented significant anti-amoebic effects against B. mandrillaris, while all the treatments indicated notable amoebicidal properties against N. fowleri. Amoebicidal effects were radically enhanced upon conjugating the drugs with nanoparticles. The IC50 values for KM-38-AgNPs-F, KM-20-AgNPs-M, and KM-IF were 65.09, 91.27, and 72.19 mu g.mL-1, respectively, against B. mandrillaris. Whereas against N. fowleri, the IC50 values were: 71.85, 73.95, and 63.01 mu g.mL-1, respectively. Additionally, nanoformulations significantly reduced N. fowleri-mediated host cell death, while nanoformulations along with fluconazole and metronidazole considerably reduced Balamuthia-mediated human cell damage. Finally, all the tested drugs and their nanoformulations revealed limited cytotoxic activity against human cerebral microvascular endothelial cell (HBEC-5i) cells. Conclusion These compounds should be developed into novel chemotherapeutic options for use against these distressing infections due to free-living amoebae, as currently there are no effective treatments.Öğe Cinnamic acid and lactobionic acid based nanoformulations as a potential antiamoebic therapeutics(Academic Press Inc Elsevier Science, 2023) Akbar, Noor; Kawish, Muhammad; Jabri, Tooba; Khan, Naveed Ahmed; Shah, Muhammad Raza; Siddiqui, RuqaiyyahAcanthamoeba castellanii causes granulomatous amoebic encephalitis, an uncommon but severe brain infection and sight-threatening Acanthamoeba keratitis. Most of the currently used anti-amoebic treatments are not always effective, due to persistence of the cyst stage, and recurrence can occur. Here in this study we synthesize cin-namic acid and lactobionic acid-based magnetic nanoparticles (MNPs) using co-precipitation technique. These nanoformulations were characterized by Fourier transform infrared spectroscopy and Atomic form microscopy. The drugs alone (Hesperidin, Curcumin and Amphotericin B), magnetic NPs alone, and drug-loaded nano -for-mulations were evaluated at a concentration of 100 mu g/mL for antiamoebic activity against a clinical isolate of A. castellanii. Amoebicidal assays revealed that drugs and conjugation of drugs and NPs further enhanced amoebicidal effects of drug-loaded nanoformulations. Drugs and drug-loaded nanoformulations inhibited both encystation and excystation of amoebae. In addition, drugs and drug-loaded nanoformulations inhibited parasite binding capability to the host cells. Neither drugs nor drug-loaded nanoformulations showed cytotoxic effects against host cells and considerably reduced parasite-mediated host cell death. Overall, these findings imply that conjugation of medically approved drugs with MNPs produce potent anti-Acanthamoebic effects, which could eventually lead to the development of therapeutic medications.Öğe Efficient extraction of methylene blue from aqueous solution using phosphine-based deep eutectic solvents with carboxylic acid(2022) Hassan, Muhammad Faheem; Khan, Amir Sada; Akbar, Noor; İbrahim, Taleb Hassan; Khamis, Mustafa I.Methylene blue (MB), an organic thiazine dye, has numerous industrial and medical applications. However, MB is a wastewater contaminant that is harmful to humans and aquatic life. Hence, its removal from water bodies is essential. In this work, five novel deep eutectic solvents (DESs) were synthesized using different precursors, screened, and studied for the extraction of methylene blue (MB) from aqueous solution using liquid-liquid extraction. The first, TOP-SA, was synthesized using trioctylphosphine (TOP) as a hydrogen bond acceptor (HBA) and 2-hydroxy benzoic acid as a hydrogen bond donor (HBD). Among these, TOP-SA had the highest MB removal efficiency. The effects of pH, contact time, initial MB concentration, volumetric ratio, temperature, and ionic strength were studied and optimized. A 99.3% removal was achieved in 5 min for a 200 mg dm(-3) MB solution mixed in a 1:10 ratio with TOP-SA at 25.0 degrees C. The structural properties of TOP-SA and its interactions with MB were investigated using FTIR. TOP-SA's toxicity was investigated using human cells in vitro. TOP-SA was found to be comparatively less toxic and is a more efficient MB remover than other literature reported ionic liquids (ILs).Öğe Gut microbiome of Crocodylus porosus and cellular stress: inhibition of nitric oxide, interleukin 1-beta, tumor necrosis factor-alpha, and prostaglandin E2 in cerebrovascular endothelial cells(Springer, 2023) Siddiqui, Ruqaiyyah; Akbar, Noor; Maciver, Sutherland K.; Alharbi, Ahmad M.; Alfahemi, Hasan; Khan, Naveed AhmedCrocodiles are renowned for their resilience and capacity to withstand environmental stressors, likely influenced by their unique gut microbiome. In this study, we determined whether selected gut bacteria of Crocodylus porosus exhibit anti-inflammatory effects in response to stress, by measuring nitric oxide release, interleukin 1-beta, tumor necrosis factor-alpha, and prostaglandin E2 in cerebrovascular endothelial cells. Using the Griess assay, the findings revealed that among several C. porosus gut bacterial isolates, the conditioned media containing the metabolites of two bacterial strains (CP27 and CP36) inhibited nitric oxide production significantly, in response to the positive control, i.e., taxol-treatment. Notably, CP27 and CP36 were more potent at reducing nitric oxide production than senloytic compounds (fisetin, quercetin). Using enzyme linked immunosorbent assays, the production of pro-inflammatory cytokines (IL-1 beta, TNF-alpha, PGE2), was markedly reduced by treatment with CP27 and CP36, in response to stress. Both CP27 and CP36 contain a plethora of metabolites to exact their effects [(3,4-dihydroxyphenylglycol, 5-methoxytryptophan, nifedipine, 4-chlorotestosterone-17-acetate, 3-phenoxypropionic acid, lactic acid, f-Honaucin A, l,l-Cyclo(leucylprolyl), 3-hydroxy-decanoic acid etc.], indicative of their potential in providing protection against cellular stress. Further high-throughput bioassay-guided testing of gut microbial metabolites from crocodiles, individually as well as in combination, together with the underlying molecular mechanisms, in vitro and in vivo will elucidate their value in the rational development of innovative therapies against cellular stress/gut dysbiosis.Öğe Mass spectrometric analysis of bioactive conditioned media of bacteria isolated from reptilian gut(Future Sci Ltd, 2023) Siddiqui, Ruqaiyyah; Akbar, Noor; Soares, Nelson Cruz; Al-Hroub, Hamza Mohammad; Semreen, Mohammad Harb; Maciver, Sutherland K.; Khan, Naveed AhmedPlain language summaryCrocodiles thrive in unsanitary conditions, feed on rotten meat, and endure conditions that are detrimental to human health. In addition to their immune system, we speculate that their microbial gut flora produce substances contributing to their hardiness and longevity. Herein, we showed that selected bacteria isolated from crocodile gut produced potent antibacterial properties against multiple drug-resistant pathogenic Gram-negative and Gram-positive bacteria. LC-MS/MS revealed the identity of gut microbial metabolites. These findings suggest that analyses of crocodile gut bacteria may reveal potential drug leads that can be utilized as probiotics/pre/post/antibiotics for the benefit of human health, however intensive future research is needed to realize these expectations. Aim: To determine whether selected gut bacteria of crocodile exhibit antibacterial properties. Materials & methods: Two bacteria isolated from Crocodylus porosus gut were used, namely: Pseudomonas aeruginosa and Aeromonas dhakensis. Conditioned media were tested against pathogenic bacteria and metabolites were analyzed using liquid chromatography-mass spectrometry. Results & conclusion: Antibacterial assays revealed that conditioned media showed potent effects against pathogenic Gram-positive and Gram-negative bacteria. LC-MS revealed identity of 210 metabolites. The abundant metabolites were, N-Acetyl-L-tyrosine, Acetaminophen, Trans-Ferulic acid, N, N-Dimethylformamide, Pyrocatechol, Cyclohexanone, Diphenhydramine, Melatonin, Gamma-terpinene, Cysteamine, 3-phenoxypropionic acid, Indole-3-carbinol, Benzaldehyde, Benzocaine, 2-Aminobenzoic acid, 3-Methylindole. These findings suggest that crocodile gut bacteria are potential source of novel bioactive molecules that can be utilized as pre/post/antibiotics for the benefit of human health. Tweetable abstractGut microbiome of hardy crocodile is a potential pharmacy that should be exploited for human benefit.Öğe Potential anti-amoebic activity of sulfonate- and sulfamate-containing carboxamide derivatives against pathogenic Acanthamoeba castellanii belonging to the genotype T4(Elsevier Ireland Ltd, 2024) Akbar, Noor; Siddiqui, Ruqaiyyah; El-Gamal, Mohammed I.; Zaraei, Seyed-Omar; Saeed, Balsam Qubais; Alawfi, Bader Saleem; Khan, Naveed AhmedAcanthamoeba are ubiquitously distributed in the environment and can cause infection of the central nervous system as well a sight-threatening eye infection. Herein, the potential anti-amoebic activity of a series of sulfonate/sulfamate derivatives against pathogenic A. castellanii was evaluated. These compounds were tested using several assays namely amoebicidal, adhesion, excystation, cytotoxic, and cytopathogenicity. Amoebicidal assays revealed that the selected compounds reduced amoebae viability significantly (P < 0.05), and exhibited IC50 values at two-digit micromolar concentrations. Sulfamate derivatives 1j & 1k inhibited 50% of amoebae at 30.65 mu M and 27.21 mu M, respectively. The tested compounds blocked amoebae binding to host cells as well as inhibited amoebae excystation. Notably, the selected derivatives exhibited minimal human cell cytotoxicity but reduced parasite-mediated host cell damage. Overall, our study showed that sulfamate derivatives 1j & 1k have anti-amoebic potential and offer a promising avenue in the development of potential anti-amoebic drug candidates.Öğe Selected Gut Bacteria from Water Monitor Lizard Exhibit Effects against Pathogenic Acanthamoeba castellanii Belonging to the T4 Genotype(Mdpi, 2023) Akbar, Noor; Khan, Naveed Ahmed; Giddey, Alexander D.; Soares, Nelson C.; Alharbi, Ahmad M.; Alfahemi, Hasan; Siddiqui, RuqaiyyahWater monitor lizards (WMLs) reside in unhygienic and challenging ecological surroundings and are routinely exposed to various pathogenic microorganisms. It is possible that their gut microbiota produces substances to counter microbial infections. Here we determine whether selected gut bacteria of water monitor lizards (WMLs) possess anti-amoebic properties using Acanthamoeba castellanii of the T4 genotype. Conditioned media (CM) were prepared from bacteria isolated from WML. The CM were tested using amoebicidal, adhesion, encystation, excystation, cell cytotoxicity and amoeba-mediated host cell cytotoxicity assays in vitro. Amoebicidal assays revealed that CM exhibited anti-amoebic effects. CM inhibited both excystation and encystation in A. castellanii. CM inhibited amoebae binding to and cytotoxicity of host cells. In contrast, CM alone showed limited toxic effects against human cells in vitro. Mass spectrometry revealed several antimicrobials, anticancer, neurotransmitters, anti-depressant and other metabolites with biological functions. Overall, these findings imply that bacteria from unusual places, such as WML gut, produce molecules with anti-acanthamoebic capabilities.