Yazar "Assadi, Mohammad Hussein Naseef" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Insights into One-Dimensional Thermoelectric Materials: A Concise Review of Nanowires and Nanotubes(Multidisciplinary Digital Publishing Institute (MDPI), 2024) Latronico, Giovanna; Asnaashari Eivari, Hossein; Assadi, Mohammad Hussein NaseefThis brief review covers the thermoelectric properties of one-dimensional materials, such as nanowires and nanotubes. The highly localised peaks of the electronic density of states near the Fermi levels of these nanostructured materials improve the Seebeck coefficient. Moreover, quantum confinement leads to discrete energy levels and a modified density of states, potentially enhancing electrical conductivity. These electronic effects, coupled with the dominance of Umklapp phonon scattering, which reduces thermal conductivity in one-dimensional materials, can achieve unprecedented thermoelectric efficiency not seen in two-dimensional or bulk materials. Notable advancements include carbon and silicon nanotubes and Bi3Te2, Bi, ZnO, SiC, and Si1−xGex nanowires with significantly reduced thermal conductivity and increased ZT. In all these nanowires and nanotubes, efficiency is explored as a function of the diameter. Among these nanomaterials, carbon nanotubes offer mechanical flexibility and improved thermoelectric performance. Although carbon nanotubes theoretically have high thermal conductivity, the improvement of their Seebeck coefficient due to their low-dimensional structure can compensate for it. Regarding flexibility, economic criteria, ease of fabrication, and weight, carbon nanotubes could be a promising candidate for thermoelectric power generation. © 2024 by the authors.Öğe Metal-support interaction in pt nanodisk-carbon nitride catalyst: insight from theory and experiment(MDPI, 2024) Doustkhah, Esmail; Kotb, Ahmed; Balkan, Timuçin; Assadi, Mohammad Hussein NaseefMetal-support interaction plays a critical role in determining the eventual catalytic activity of metals loaded on supporting substrates. This interaction can sometimes cause a significant drop in the metallic property of the loaded metal and, hence, a drop in catalytic activity in the reactions, especially in those for which low charge carrier transfer resistance is a necessary parameter. Therefore, there should be a case-by-case experimental or theoretical (or both) in-depth investigation to understand the role of support on each metal. Here, onto a layered porous carbon nitride (g-CN), we grew single crystalline Pt nanodisks (Pt@g-CN) with a lateral average size of 21 nm, followed by various characterisations such as electron microscopy techniques, and the measurement of electrocatalytic activity in the O-2 reduction reaction (ORR). We found that intercalating Pt nanodisks in the g-CN interlayers causes an increase in electrocatalytic activity. We investigated the bonding mechanism between carbon support and platinum using density functional theory and applied the d-band theory to understand the catalytic performance. Analysis of Pt's density of states and electronic population across layers sheds light on the catalytic behaviour of Pt nanoparticles, particularly in relation to their thickness and proximity to the g-CN support interface. Our simulation reveals an optimum thickness of similar to 11 angstrom, under which the catalytic performance deteriorates.