Yazar "El-Emam, R.S." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Assessment of hydrogen as a potential energy storage for urban areas’ PV-assisted energy systems – Case study(Elsevier Ltd, 2022) El-Emam, R.S.; Ezzat, M.F.; Khalid, FarrukhThe world is experiencing unprecedented development in the clean energy sector in residential and industrial applications. This paper provides a case study assessing different scenarios of greenizing the electrical energy demand in El-Mostakbal city in Egypt. Three scenarios are studied with consideration of a photovoltaic (PV) system integrated with the grid-connected city with different integrated system configurations. The scenarios for the grid-connected city are scenario-I: only PV, scenario-II: PV with batteries for electricity storage along with grid electricity, and scenario-III: PV with hydrogen production, storage, and utilization for covering the electric demand along with grid electricity, these scenarios are assessed technoeconomically, and the results show an optimized case where the electricity demand of the city can be met with 64.3% produced from solar energy, at $71.7 M of the net present cost. © 2022 Hydrogen Energy Publications LLCÖğe Multi-criteria analysis for screening of reversible metal hydrides in hydrogen gas storage and high pressure delivery applications(Elsevier, 2022) Bhattacharyya, R.; El-Emam, R.S.; Khalid, FarrukhMetals and alloys forming reversible hydrides with hydrogen gas are potential building blocks for compact, solid state hydrogen storage systems. Based on the materials’ thermodynamic characteristics, their use as temperature-swing gas compression and delivery systems in the hydrogen economy is also possible. Given the wide variety of materials developed and tested at laboratory and pilot scales, a harmonized method of selecting the feasible material(s) for a particular real-life application is required. This study proposes a system selection framework based on a normalized, multi-criteria metric. Using calculated values of multi-criteria metric, multi-criteria screening and ranking of potential materials has been demonstrated for a particular use case. It is found that the alloy TiMn1.52 having value of additive metric between 0.25 and 0.35 represents the best material for a single stage system. The alloy pair CaNi5–Ti1.5CrMn represents the best alternative for a two-stage system with additive metric values between 0.63 and 0.82. Energy and economic characteristics of the metal hydride gas compression and delivery systems are evaluated and compared with an equivalent mechanical compression system producing the same final effect (i.e., delivery of a given quantity of gas at a defined pressure). © 2021 Hydrogen Energy Publications LLC