Multi-criteria analysis for screening of reversible metal hydrides in hydrogen gas storage and high pressure delivery applications

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Metals and alloys forming reversible hydrides with hydrogen gas are potential building blocks for compact, solid state hydrogen storage systems. Based on the materials’ thermodynamic characteristics, their use as temperature-swing gas compression and delivery systems in the hydrogen economy is also possible. Given the wide variety of materials developed and tested at laboratory and pilot scales, a harmonized method of selecting the feasible material(s) for a particular real-life application is required. This study proposes a system selection framework based on a normalized, multi-criteria metric. Using calculated values of multi-criteria metric, multi-criteria screening and ranking of potential materials has been demonstrated for a particular use case. It is found that the alloy TiMn1.52 having value of additive metric between 0.25 and 0.35 represents the best material for a single stage system. The alloy pair CaNi5–Ti1.5CrMn represents the best alternative for a two-stage system with additive metric values between 0.63 and 0.82. Energy and economic characteristics of the metal hydride gas compression and delivery systems are evaluated and compared with an equivalent mechanical compression system producing the same final effect (i.e., delivery of a given quantity of gas at a defined pressure). © 2021 Hydrogen Energy Publications LLC

Açıklama

Anahtar Kelimeler

Gas Compression, Hydrogen, Metal Hydrides, Multi-criteria Analysis

Kaynak

International Journal of Hydrogen Energy

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

Sayı

Künye

Bhattacharyya, R., El-Emam, R. S., & Khalid, F. (2022). Multi-criteria analysis for screening of reversible metal hydrides in hydrogen gas storage and high pressure delivery applications. International Journal of Hydrogen Energy, doi:10.1016/j.ijhydene.2021.12.168