Makine Mühendisliği Bölümü Makale Koleksiyonu

Bu koleksiyon için kalıcı URI

Güncel Gönderiler

Listeleniyor 1 - 20 / 45
  • Öğe
    Influence of hydrogen injection timing and duration on the combustion and emission characteristics of a diesel engine operating on dual fuel mode using biodiesel of dairy scum oil and producer gas
    (Elsevier Ltd, 2023) Lalsangi, Sadashiva; Yaliwal V.S.; Banapurmath N.R.; Soudagar, Manzoore Elahi M.; Balasubramanian, Dhinesh; Sonthalia, Ankit; Varuvel, Edwin Geo; Wae-Hayee, Makatar
    The main aim of the present work is to investigate the influence of hydrogen injection timing and injection duration on the combustion and emissions of a CI engine functioning on dual fuel (DF) mode by employing diesel/dairy scum oil methyl ester (DiSOME)/Waste frying oil methyl ester (WFOME) - producer gas (PG) combination. Hydrogen flow rate was maintained constant (8 lpm) and injected in air-producer gas (PG) mixture an inlet manifold using a gas injector. In this current work, injection timing was varied from TDC to 15 deg., aTDC in steps of 5. Similarly, injection duration was adopted from 30 deg., CA to 90 deg., CA and differed in steps of 30. From the outcome of work, it is noticed that the best possible injection timing and injection duration were found to be 10 deg., aTDC and 60 deg., CA respectively. Results showed that, at optimum injection parameters, diesel-PG combination with hydrogen resulted in augmented BTE by 6.7% and 12.4%, decreased smoke by 26.04% and 36.4%, decreased HC by 16.6% and 22.4%, decreased CO by 23.5% and 29.6% and increased NOx by 12.4% and 22.1%, compared to DiSOME and WFOME supported DF operation. Investigation with DiSOME-hydrogen enriched PG combustion showed satisfactory operation. © 2022 Hydrogen Energy Publications LLC
  • Öğe
    Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model
    (Elsevier Ltd, 2023) Karamanlı, Armağan; Eltaher, Mohamed A.; Thai, Son; Vo, Thuc P.
    This study presents the higher order finite element model to explore the transient vibration of two-dimensional functionally graded (2D-FG) porous microplate under harmonic moving loads, that can be helped in design of nanoplate devices such as NEMS, nanofilters, nanoresonators, and nanoswitches. A normal and shear deformable plate theory with five unknowns is exploited with the modified couple stress theory to portray the kinematic relations, constitutive stress–strain equations, and size-dependence effect. This complicated problem is investigated for the first time based on Newmark's method to obtain time history analysis of 2D-FG porous microplates having in-plane inhomogeneity. In-plane displacements and stretching component of the transverse displacement are interpolated by using Bogner-Fox-Schmit rectangular element with four degrees of freedom (DOF) for each node satisfying the C1 continuity requirement. In addition, bending and shear components of the transverse displacement are presented by a nonconforming rectangular element with six DOF for each node satisfying the C2 continuity requirement. Various boundary conditions are considered to evaluate the influences of the thickness to material length parameter, aspect ratio, gradient index in two directions, material loss due to porosity in two directions, load velocity parameter and load excitation frequency ratio. It is revealed based on the results that dynamic deflections of 2D-FG porous microplates are significantly affected by the variation of the analysis parameters mentioned above. © 2022 Elsevier Ltd
  • Öğe
    Application of Taguchi design in optimization of performance and emissions characteristics of n-butanol/diesel/biogas under dual fuel mode
    (Elsevier, 2023) Goyal, Deepam; Goyal, Tarun; Mahla, Sunil Kumar; Goga, Geetesh; Dhir, Amit; Balasubramanian, Dhinesh; Hoang, Anh Tuan; Joseph Shobana Bai, Femilda Josephin; Varuvel, Edwin Geo
    Combustion experts are in search of some alternative fuel from last few decades owing to diminishing petroleum products and unexpected variations in habitat, which are result of venomous emissions from the CI engines. The present investigation intended to assess the performance and emission parameters of a diesel engine by fueling it with pilot fuel (blends of diesel and n-butanol) and primary fuel (Biogas). Results revealed that BTE, HC and CO increases whilst NOx and smoke emissions were reduced by using the pilot and primary fuel together in relation with natural diesel. Experimentation was done using Taguchi L9 orthogonal array design. The engine load, flow rate of biogas and butanol in fuel blend percentage were selected as input parameters whereas brake thermal efficiency (BTE) and emission characteristics i.e., HC, CO, NOx and smoke were chosen as response variables. ANOVA was carried out for the responses by utilizing MINITAB software. The higher value of raw data and S/N ratio for BTE was noted with high engine load, low flow rate of biogas and butanol blend percent. For the emission characteristics i.e., HC, CO and smoke, lower raw data and high S/N ratio values were attained in the order of rank engine load > butanol blend percent > biogas flow rate while the similar values for NOx were attained in the rank engine load > biogas flow rate > butanol blend percent. Taguchi design was noted to be an effective tool for the optimization of various response parameters and the optimum levels of input parameters were calculated after analysis. Full engine load for BTE and HC, Biogas flow rate of 15 lpm for BTE, HC and CO, and 20 % of butanol blend for HC, CO and smoke were found to be the optimum conditions for the conducted experimentation. © 2022 Elsevier Ltd
  • Öğe
    Sustainable marina concept with green hydrogen utilization: a case study
    (Elsevier, 2022) Karayel, Görkem Kubilay; Javani, Nader; Dinçer, İbrahim
    The current study investigates the green hydrogen production from renewable energy for a sustainable yacht marina. The main idea is to create a sustainable harbor for utilizing renewable energy sources using electrolysers to produce hydrogen and providing power for both marina energy demand and transportation fuel needs. Generating electricity from renewable energy resources and converting into green hydrogen in marinas are the main objectives of the current study. Solar and wave energy resources are used for calculating total hydrogen production potential. Four different sizes of luxury yachts are considered in the calculations. The considered three yacht marinas are located in Malaga, Mugla, and Istanbul. The average annual green hydrogen production potential of a marina from offshore solar energy is estimated to be 1.34, 1.38, 1.47 kt, and annual green hydrogen production from wave energy is 2.66, 3.06, 3.99 kt for the considered marinas locates in Marbella, Bodrum, and Atakoy, respectively. During the summer season, 400 small-sized, 250 medium-sized, or 100 large-sized yachts are potentially considered for fueling with green hydrogen. At maximum capacity, in Atakoy marina, which is chosen for the case study, a total of 243 hydrogen-fueled mega-yachts can potentially be refueled with green hydrogen. The study results show that the marinas selected in the specified locations appear to feasible for sustainable hydrogen applications. © 2022 Elsevier Ltd
  • Öğe
    Experimental study of droplet combustion and diesel engine characteristics for azolla biodiesel
    (TAYLOR & FRANCIS INC, 2022) Ganapathy, Saravanan Chidambaram; Seshadri, Thiruvenkatachari; Jayaraman, Sasikala; Raman, Vallinayagam; Malaiperumal, Vikneswaran; Varuvel, Edwin Geo; Joseph Shobana Bai, Femilda Josephin
    This study pertains to studying the feasibility of the third-generation biodiesel obtained from one of the algae species known as Azolla microphylla by exploring their fundamental droplet combustion behavior and diesel engine characteristics. Firstly, the droplet evolution and burn rate are investigated for diesel, Azolla100, and Azolla50 (50% biodiesel +50% diesel) based on the experimental study of suspended droplet combustion. The diesel droplet showed steady combustion with linear regression for the decrease in droplet surface with time throughout its lifetime, while the Azolla100 and Azolla50 droplets showed a linear trend initially, and after a certain point, they resulted in a non-linear trend as a result of disruptive burning. The evaporation and burn rate was found to be higher for Azolla100 and Azolla50 than diesel during the steady burning period and thereafter it decreased with increasing Azolla concentration. The time evolution of droplet combustion images indicated that with increasing biodiesel concentration, the combustion duration was decreased due to secondary droplet ejections and microexplosion, and the residue burning duration was increased. The microexplosion increased the rate of combustion, however, droplet ejection resulted in incomplete combustion. Secondly, the engine experiments were performed for Azolla50 at different fuel injection pressures. The results showed that in-cylinder pressure and Brake thermal efficiency (BTE) for Azolla50 at 300 bar injection pressure were lower than diesel due to limitations with the physical properties of biodiesel. In order to improve the engine characteristics of Azolla50, this study increased the fuel injection pressure to 900 bar. As a result, the BTE for Azolla50 at 900 bar injection pressure is improved by 9.2% and 10.2% at low and full load conditions, respectively, compared to Azolla50 at 300 bar injection pressure. Overall, the spray-driven combustion for Azolla50 is limited by the physical properties of the biodiesel, which affects the mixture formation. On the other hand, the microexplosion and droplet ejection observed with the biodiesel during the combustion study would favor the combustion by improving the atomization and mixing process.
  • Öğe
    Experimental assessment on the performance, emission and combustion characteristics of a safflower oil fueled CI engine with hydrogen gas enrichment
    (Elsevier Ltd, 2022) Praveena, V.; Joseph Shobana Bai, Femilda Josephin; Balasubramanian, Dhinesh; Devarajan, Yuvarajan; Aloui, Fethi; Varuvel, Edwin Geo
    Inducting hydrogen with biodiesel in a compression ignition (CI) engine contributes to improvising the performance characteristics of the engine and minimize long-term issues. Combustion of hydrogen along with intake air impacts positively in air quality by preventing the formation of toxic emissions like hydrocarbons (HC) and carbon monoxide (CO). The benefits of hydrogen such as good diffusion rate, lesser ignition energy and fast flame propagation rate promotes a more homogenously mixed air fuel ratio. This experimental work focuses on enhancement of the performance and combustion characteristics of a direct injection compression ignition (DICI) engine by enriching the biodiesel with various levels of hydrogen gas supplement at the intake manifold. The brake thermal efficiency of the engine with safflower oil biodiesel is 31.15 % which is far inferior to that of diesel with 34 %. As an effort to improve the performance characteristics of the CI engine, hydrogen gas is inducted at 4 %, 8 % and 12 % energy share. HC, CO and smoke emission decreases by 15.09 %, 34.6 % and 18 % respectively compared to neat biodiesel at full load of 5.2 kW. An opposite trend is observed in NOx emissions which are raised from 1650 ppm to 1852 ppm. A 12.2 % increase in NOx emissions are realized due to homogenous flammable mixture that combusts closer to Top dead center (TDC). The hydrogen enrichment with safflower oil biodiesel influences the combustion characteristics in a positive vein except for the NOx emissions, which could be minimized through the use of retrofit devices like selective catalytic reducer, diesel oxidation catalyst etc.
  • Öğe
    Effect of alloying elements and ceramic coating on the surface temperature of an aluminum piston in a diesel engine
    (HINDAWI LTD, 2022) Vengatesan, S.; Yadav, Paras; Varuvel, Edwin Geo
    The engine piston is subjected to very high temperature during the combustion process, and it is very difficult to control the stability of the geometry at elevated temperature. The stability of the engine piston was analysed by finite element method with steady-state conditions for three different types of approach to control it, where the influence of the alloying element of aluminum piston, influence of surface coating, and its impact on the thickness variation followed by the influence of holes on the coating surface have been analysed in detail. It is observed that the coating with holes shows good agreement with requirement compared to the influence of the alloying element and coated piston. The conduction mode of heat transfer is controlled, and also, the heat transfer to the adjacent components is facilitated by holes on the coated piston.
  • Öğe
    Techno-economic review assessment of hydrogen utilization in processing the natural gas and biofuels
    (Elsevier Ltd, 2022) Narayanan R., Deepak; Rajkumar, Sundararajan; N., Vinithkrishna; Thangaraja, Jeyaseelan; M., Sivagaminathan; Devarajan, Yuvarajan; Geo Varuvel, Edwin
    The automobile sector dominated by conventional fossil fuels greatly impacted human lives and strengthened the economy of many countries. However, the harmful emissions from the engines have contaminated the environment and induced severe climate changes; hence the emphasis is being laid on low carbon fuels that emit lower emissions and greenhouse gases. In this regard, hydrogen (H2) is considered as a no-carbon fuel; however, safety and storage are the main concerns. Therefore, the H2 can be potentially utilized with compressed natural gas (CNG) to form hydrogen-enriched compressed natural gas (HCNG) and processed with biofuels to produce hydrogenated biofuels. HCNG emits 20% lower carbon dioxide, 30% less carbon monoxide and 25% reductions in NOx emissions compared with CNG. The hydrogenated biodiesel fuels exhibit higher cetane number and better storage stability. However, the practical challenge is to render them economically affordable with minimum carbon footprints. Thus, the current review is aimed to provide comprehensive detail on the potential of hydrogen in fuel formulation techniques and their effect on engine performance, emission characteristics and various hydrogen production methods viz. blue and green hydrogen. Further, this review highlights the techno-economic characteristics of hydrogen utilization and economic characteristics of the low carbon fuels (both liquid and gaseous fuels) for sustainable mobility.
  • Öğe
    Processing and utilization of an eco-friendly oil as heat transfer fluid derived from camelina seeds
    (WILEY, 2022) Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Vellaiyan, Suresh; Jayabal, Ravikumar; Varuvel, Edwin Geo; Natrayan, L.
    Bio-oil from nonedible sources is an ideal alternative for thermal oil in solar and heat applications. The significant merits of bio-oil in high-temperature applications are less volatile, higher availability, non-hazardous, environmentally friendly, and renewable resources. Heat transmission fluids (HF) are a medium that transfers heat in all solar heating applications. Generally, mineral oils derived from crude oil act as HF, harming humans and the environment during their disposal. This negative effect shall be lowered by replacing conventional fluids with bio-oil developed from vegetable or synthetic oil. Of late, fats obtained from waste and inedible sources are promising in solar applications as they eliminate associated issues. This study uses eco-friendly bio-oil as a heat transfer fluid obtained from camelina oil. Camelina oil is of inedible vegetable source and is produced by cold pressing from the Camelina sativa seeds. Heat transfer fluid is produced by subjecting raw camelina oil to a base catalyst reaction. No work till date has investigated the camelina oil as an eco-friendly heat transfer fluid. Various parameters for obtaining a higher yield of fluid with lower reagents waste are analyzed in this study. After conversion, the camelina oil was reviewed for its suitability as a heat transfer fluid. Variations in critical properties such as density, thermal conductivity, specific heat capacity, and dynamic viscosity with temperature are analyzed. Results revealed that the properties of bio-oil provided are comparable with conventional fluids. Based on the results, the maximum reaction efficiency of about 93% was achieved at 600 rpm of agitation speed, 1% wt of NaOH concentration, 5.5:1 molar proportion, and 65 degrees C of reaction temperature. The critical properties of camelina bio-oil improved with temperature and depend on the composition of fatty acids. Hence, CME acts as an improved heat transfer fluid and shall be a probable applicant to replace the synthetic fluid in heating applications.
  • Öğe
    Experimental investigation and performance prediction of gasoline engine operating parameters fueled with diisopropyl ether-gasoline blends: Response surface methodology based optimization
    (Elsevier Ltd., 2022) Sathyanarayanan, Seetharaman; Suresh, Sivan; Saravanan, C. G; Vikneswaran, M.; Dhamodaran, Gopinath; Sonthalia, Ankit; Joseph Shobana Bai, Femilda Josephin; Varuvel, Edwin Geo
    In this research, gasoline engine performance and emission characteristics were studied when powered by diisopropyl ether-gasoline blends. The main objective of this study is to determine the behavior of diisopropyl ether-gasoline blends at various engine speeds and compression ratios. Further, the engine parameters were optimized using the response surface methodology. Enriched oxygen, higher latent heat of vaporization, and the readily volatile nature of the fuel enhanced the brake thermal efficiency and lowered the hydrocarbons and carbon monoxide due to a better combustion rate. The developed model exhibited superior R2 values with a 0.957 desirability factor. The optimum parameters such as speed, compression ratio, and fuel-blend concentrations were found at 2250 rpm, 10:1, and D25 (75% gasoline and 25% diisopropyl ether), respectively. The responses for the optimal input parameters were brake thermal efficiency (31.53%), specific fuel consumption (0.2923 kg/kWh), carbon monoxide (0.14% by Vol.), hydrocarbons (31 ppm), and oxides of nitrogen (708 ppm). The predicted values for optimum engine parameters were validated with the experimental data, and their percentage of absolute error was found to be less than 5%. Thus, the study concludes that diisopropyl-ether gasoline blends can be used as an alternative fuel to enhance the brake thermal efficiency and reduce the pollution level, and the proposed numerical model can predict the responses with high accuracy.
  • Öğe
    Environmentally conscious manufacturing and life cycle analysis: a state-of-the-art survey
    (Hindawi Limited, 2022) Paulraj, Prathap; Ilangovan, Padmanaban; Subramanian, Kannan; Nagarajan, Mohan Raj; Suthan, R.; Sakthimurugan, V.; Madhu, S.; Varuvel, Edwin Geo; Lenin, Haiter
    Research on developing new methodologies on environmentally conscious manufacturing and way of reducing environmental impacts on product design was started over two decades ago. Environmentally conscious manufacturing has become a challenge to the environment and to the society itself, enforced primarily by government regulations and the customer expectation on environmental issues. In both industry and academics, there is a sizable following for environmental-related issues which are aimed at finding answers to the problems that arise in this newly emerged area. Problems are widespread including the ones related to the life cycle of products, disassembly, material recovery, and remanufacturing and pollution prevention. Only very few researchers have concentrated on ecofriendly products. This paper investigates the literature by classifying more than 200 published references into four categories, viz., design for environment checklist, environmentally conscious manufacturing, life cycle analysis, and material selection.
  • Öğe
    Combined effects of nozzle hole variation and piston bowl geometry modification on performance characteristics of a diesel engine with energy and exergy approach
    (Elsevier Ltd., 2022) Praveena, V.; Leenus Jesu Martin, M.; Varuvel, Edwin Geo
    This experimental work aims to address the challenges of waste management. Biomass waste is converted into useful fuel and considered as a replacement to conventional fuel in CI engines. In this context, the grape marc and grape pomace are crushed and further processed to produce grapeseed oil. The grapeseed oil is further trans esterified to produce grapeseed seed oil methyl ester. The present study aims in examining the effect of varying piston shapes and nozzle profile on energy and exergy rates of a CI engine run with grapeseed oil methyl ester (GSME) blended with cerium oxide nano particles. The CeO2 nano particles were suspended in the base fuel at a concentration of 100 ppm and stability tests were conducted. The experiments were performed on a single cylinder, water cooled diesel engine with rated power of 5.2 kW. The research work includes two additional piston shapes namely, toroidal and shallow deep and two additional nozzle profiles viz. 4 hole and 5-hole nozzle. The hemispherical shape and 3-hole nozzle were considered as the standard one. Energy and exergy analysis were done on the experimental data to understand the exergy associated with cooling water, exhaust gas and unaccounted losses. The energy and exergy rates show that increase in nozzle hole number, decreases the destructive availability of the system. The exergetic efficiency of 32.8% is higher proving that toroidal shape and 5-hole nozzle profile is comparatively better and suitable for effective engine operation. HC, CO and smoke emissions reduced considerably by 14.4%–30% by the engine modification. Brake thermal efficiency was improved from 28.2% to 31.02% for CI engine with biodiesel. The paper addresses the gap in fuel modification clubbed with engine modification using biomass waste derived fuel. Exergy and energy analysis further add value to this current experimental work.
  • Öğe
    Sustainable city concept based on green hydrogen energy
    (Elsevier Ltd, 2022) Dinçer, İbrahim; Javani, Nader; Karayel, Görkem Kubilay
    The current study investigates the green hydrogen production from renewable energy sources for the metropolitan city of Istanbul by using electrolysers. The main idea is to create a hydrogen map for every district in Istanbul, based on renewable energy sources and water splitting technology. The potentially available renewable sources, such as solar (including offshore), wind (including offshore), biomass, geothermal and underwater current are used for calculating the total hydrogen production potential. Istanbul's potential for producing green hydrogen is estimated to be 7.96 Mt. The study results show that Catalca, Şile, Silivri, Arnavutköy, and Beykoz come out as the districts with the highest green hydrogen potential with 1.49 Mt, 1.19 Mt, 1.12 Mt, 0.57 Mt, and 0.46 Mt, respectively. After supplying the necessary power demand for the city, the remaining power is used to produce green hydrogen which may contribute an economic value of over US $100 billion with a current price of $13/kg of hydrogen and 23.88 billion US$ with a targeted price of $3/kg of hydrogen, respectively. The available potentials for each district are also specifically studied and discussed. It is more importantly expected to reduce the greenhouse gas emissions by about 90% which will ve very important to achieve a carbon-neutral city and hence country due its dominated role. Furthermore, the results provide a clear guidance to enable policymakers and private sectors to use renewable energy potentials for their investment purposes or promote clean energy programs, tackling carbon-based energy consumption, pollution, and greenhouse effect. This, later on, can be used by policymakers and energy providers to help the city and local communities for achieving the United Nation's sustainable development goals.
  • Öğe
    Inedible oil feedstocks for biodiesel production: A review of production technologies and physicochemical properties
    (Elsevier B.V., 2022) Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Subbiah, Ganesan; Vellaiyan, Suresh; Nagappan, Beemkumar; Varuvel, Edwin Geo; Thangaraja, Jeyaseelan
    Biodiesel emits lesser harmful pollutant emissions than renewable and biodegradable ones compared diesel. Research confirms that edible products and crops are the major sources of biofuel production. Excessive usage of these crops leads to higher production costs, economic imbalance, and depletion of food supply. Biofuel production from inedible sources shall lower the drawbacks of edible products and crops. Inedible feedstocks are the sustainable source of biofuel production as they are mostly grown on waste/abandoned land, produce similar or higher yields than edible feedstocks, and are fairly cost-effective. Hence this present work reviews the challenges and possibilities of employing inedible oil and products as a potential feedstock for biofuel production. Salient features of inedible oil such as production technologies, cost and benefits, fatty acid and physicochemical properties and oil extraction technology are reviewed from the latest literature. The outcome of this study suggests that there is a huge prospect of utilizing inedible oil as a reliable feedstock for biofuel generation. Among various production processes, scCO2 extraction technology proved to reduce inedible oil's moisture by 70% and FFA content by 62%, with a higher conversion rate of about 97%, as methanol in supercritical conditions has lesser interaction with the FFA of inedible oil. Inedible feedstocks are effective, non-toxic and safe in biofuel production. However, there exists a challenge in restricting its development in large-scale commercialization.
  • Öğe
    Prediction compressive strength of cement-based mortar containing metakaolin using explainable Categorical Gradient Boosting model
    (Elsevier Ltd, 2022) Nguyen, Ngoc-Hien; Tong, Kien T.; Lee, Seunghye; Karamanlı, Armağan; Vo, Thuc P.
    Although machine learning models have been employed for the compressive strength (CS) of cement-based mortar containing metakaolin, it is difficult to understand how they work due to “black-box” nature. In order to explain the involved mechanism, Categorical Gradient Boosting (CatBoost) model with feature importance, feature interaction, partial dependence plot (PDP) and SHapley Additive exPlanations (SHAP) is proposed in this paper. A dataset consisting of 424 samples with six input variables is used to build the CatBoost model, which has optimal performance by tuning a set of seven hyper-parameters using sequential model-based optimization. Five quantitative measures (R2, MAE, RMSE, a10-, a20-index) are employed to evaluate the accuracy and the obtained results are superior to the previous study. It is from feature importance that the most significant input variable involving the CS is water-to-binder ratio, followed by age of specimen and cement grade. The strongest feature interaction is between water-to-binder ratio and metakaolin. A comprehensive parametric study is carried out via SHAP and PDP to investigate the effects of all input variables on the CS of cement-based mortar.
  • Öğe
    An experimental study of the effects of fuel injection pressure on the characteristics of a diesel engine fueled by the third generation Azolla biodiesel
    (Elsevier, 2022) Thiruvenkatachari S.; Saravanan, C. G.; Raman, Vallinayagam; Vikneswaran, M.; Femilda Josephin, J. S.; Varuvel, Edwin Geo
    This study focuses on effectively utilizing the biodiesel extracted from Azolla (third-generation biofuel), which is regarded as a renewable energy source, for fueling diesel engines. Biodiesel is unique due to its increased viscosity and different fatty acid composition, which proved difficult to attain better engine performance with a mechanical type injection system. This study expands on the previous investigation in modifying the fuel system when using Azolla biodiesel by using a common rail fuel injection system with wider injection flexibility. Considering the lack of more engine optimization studies for Azolla biodiesel, a parametric study is conducted by changing the fuel injection pressure in the range between 300 bar and 900 bar for diesel engine fueled by B20 (20% Azolla +80% diesel) blend. The experimental engine study revealed that the physical properties of the fuel adversely affect the in-cylinder combustion, which leads to poor engine performance and higher emissions at lower injection pressure (300 bar) for B20 when compared to diesel. As the injection pressure increases, the fuel atomization and other spray characteristics are enhanced and thereby improve the combustion. The Brake Thermal Efficiency (BTE) for B20 at 900 bar injection pressure is 3% higher than the diesel fuel at 300 bar injection pressure under full load conditions. The HC, CO, and smoke emission in the engine exhaust for B20 at 900 bar injection pressure was reduced by 13.3%, 28.5%, and 12.3%, respectively, when compared to diesel. Overall, this study recommends the operation of Azolla biodiesel blend in diesel at 900 bar fuel injection pressure to attain improved engine characteristics.
  • Öğe
    Biofuel from leather waste fat to lower diesel engine emissions: Valuable solution for lowering fossil fuel usage and perception on waste management
    (Institution of Chemical Engineers, 2022) Devarajan, Yuvarajan; Jayabal, Ravikumar; Munuswamy, Dinesh Babu; Ganesan, S.; Varuvel, Edwin Geo
    This work examines the viability of examining waste fat extracted from industrial leather waste as an alternative to diesel. These wastes are harmful if disposed to the environment. Conventional transesterification was per- formed to produce leather waste methyl ester (LWME). Post-processing, a yield of 82.6% of methyl ester was obtained. The obtained LWME was inspected for its thermophysical properties and falls with ASTM standards. LWME was blended with petroleum diesel at 10%, 20% and 30% on a volume basis and referred to as LWME10D90, LWME20D80 and LWME30D70 correspondingly. The effect of LWME/ diesel blends was inspected in a four-stroke, single-cylinder, direct-injection engine under diverse loads. Test results revealed that the brake thermal efficiency for LWME/ diesel blends was lower than diesel at all loads with higher specific brake-specific fuel consumption was higher as both are inversely proportional. Carbon monoxide emissions were reduced by 22.7%, Hydrocarbon emissions were reduced by 48%, and Smoke emissions were reduced by 6.43%, with a 9.84% increase in nitrogen oxide emissions for LWME30D70 than diesel. It has been concluded that including LWME in diesel lowers the greenhouse gases with a marginal reduction in performance pattern.
  • Öğe
    Recent advancement on thermal management strategies in PEM fuel cell stack: a technical assessment from the context of fuel cell electric vehicle application
    (TAYLOR & FRANCIS, 2022) Madheswaran, Dinesh Kumar; Jayakumar, Arunkumar; Varuvel, Edwin Geo
    Effective thermal management strategy for the polymer electrolyte membrane fuel cell (PEMFC) stack is critical in maintaining the overall stack efficiency and durability. The present assessment critically explores the recent developments (predominantly last decade) in thermal management strategies of PEMFCs, which encompasses an in-depth analysis of the thermodynamics, corresponding effects on components of PEMFC and the waste heat recovery system. In general, the operating temperature range of a PEMFC is 60-80 degrees C. Entropy consequence and irreversible transport mechanisms of the reactants are the major contributions to heat generation. Air cooling is employed for compact stacks of less than 5 kW and water cooling is favored for stacks greater than 5 kW. Cooling using nanofluids enables better cooling efficiency than water while downsizing the size and weight of the system. Phase change cooling strategy to attain greater heat removal capacity is broadly employed for stacks greater than 10 kW, which is beneficial in a compact size of the cooling system contrasted to the water cooling system. Passive cooling methods employing vapor chamber, heat pipes and heat spreaders used were another cooling system for stack power ranges between 5 and 10 kW which have the benefit of reduced parasitic losses. In addition to thermal management strategies, integral challenges associated with each thermal management strategy is identified. Discussion on cold start thermal management of fuel cell electric vehicles was provided. Finally, the waste heat recovery system of energy efficiency and overall future prospectus for the betterment of thermal management of PEMFC is emphasized.
  • Öğe
    A review of recent advances of ionic liquids as lubricants for tribological and thermal applications
    (SAGE PUBLICATIONS, 2022) Ali, Mohamed Kamal Ahmed; Abdelkareem, Mohamed A. A.; Chowdary, Krishna; Ezzat, Muhammad Fawzy; Kotia, Ankit; Jiang, Hua
    The novel characteristics of ionic liquids (ILs) led to an improved tribological and thermal performance. This article discusses current progress in developing ILs as neat lubricants or additives in lube oils, with a focus on ILs chemistry, synthesis, miscibility, and other relevant rheological, thermal, and tribological properties at macro to nanoscales. This article also introduces a review of lubrication mechanisms based on the tribofilm formed on the rubbing interfaces owing to tribochemical reactions among the ILs, base oil, and solid bodies, which shows key insights into anti-wear properties. ILs exhibited superior anti-wear properties compared to fully formulated oils. Notably, there was no symmetry between the friction results of ILs and their wear counterpart. Furthermore, the main challenges to further improve ILs performance for tribological applications are highlighted. Eventually, prospects for ILs tribology are suggested, which will guide the development and synthesis of ILs-based lubricants for tribological applications.
  • Öğe
    Effective use of geothermal energy for hydrogen production: A comprehensive application
    (Elsevier Ltd, 2022) Karayel, Görkem Kubilay; Javani, Nader; Dinçer, İbrahim
    The present study aims to investigate the geothermal energy potential for green hydrogen production in Turkey. Geothermal energy potential varies based on each city's location and underground resources (particularly on their flowrates, temperatures and composotion). Alkaline electrolysers (ALELs) are considered for water splitting and hence hydrogen production. The total hydrogen production potential for Turkey using geothermal resources is estimated to be 559.76 kilotons. In this regard, Aydın, Manisa, and Denizli appear to be the cities with the largest hydrogen production potentials. Hydrogen generation potentials for all Turkish cities are provided and discussed for a feasible hydrogen economy. It furthermore gives a countrywide spectrum of how an effective role geothermal energy can play in making the country leader in this field. The study results may serve as a good base for planning and strategizing purposes as required for the country and help in developing new energy policies for exploiting renewable energy resources. © 2022 Elsevier Ltd