A comparative analysis of advanced machine learning models for the prediction of combustion, emission and performance characteristics using endoscopic combustion flame image of a pine oil–gasoline fuelled spark ignition engine

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Ltd.

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This research focuses on using machine learning to predict the spark ignition engine's combustion, performance, and emission parameters with bio-fuel blends such as pine oil blend, which significantly diminishes the environmental impact of traditional fuels, reduces the limitations of repeated engine experimentation and addresses the nonlinearities in engine test results contributing to sustainable cleaner fuel and energy solutions. The models used were Ensemble Decision Tree Bagging, Ensemble Least Squares Boosting, Gaussian Process Regression and Support Vector Machine Regression, with good generalization ability. Brake Specific Fuel Consumption data from the test engine trials and endoscopic image flame area data after spark timing at different crank angles (320, 400, 480, 560, and 640 after Spark Timing) were fed into the machine-learning models as predictors. The response variables were Brake thermal efficiency, Unburnt Hydrocarbons, Carbon monoxide, Carbon dioxide, Oxides of nitrogen, maximum In-cylinder pressure, and maximum heat release rate. The bootstrap technique was used to generate numerous datasets from the experimental data for data-driven model training and tested using both interpolative and extrapolative data. The experimental and predicted values for all these algorithms were subjected to repeated hyperparameter optimization trials and the best machine learning method was identified using the performance and error metrics. The Ensemble Least Squares Boost model showed the overall best correlation (R2) in the range of 0.97–0.99 for gasoline and pine oil PN20 blend for the predicted versus experimental engine parameters. The root-mean-squared error (RMSE) at maximum load ranged between 0.0086 and 0.3044 for gasoline and 0.0049–0.2046 for the Pine oil PN20 fuel blend respectively. Therefore, employing an Ensemble Least Squares Boosting machine learning framework can effectively predict the characteristics of gasoline engines using pine oil and blends. This approach serves as a virtual engine model, efficiently overcoming the limitations and complexities inherent in conventional engine experiments. © 2024 Elsevier Ltd

Açıklama

Anahtar Kelimeler

Bio-fuel Blend, Ensemble Learning, Machine Learning, Pine Oil, Prediction

Kaynak

Journal of Cleaner Production

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

484

Sayı

Künye

Godwin, D. J., Varuvel, E. G., Martin, M. L. J., & JS, F. J. (2024). A comparative analysis of advanced machine learning models for the prediction of combustion, emission and performance characteristics using endoscopic combustion flame image of a pine oil–gasoline fuelled spark ignition engine. Journal of Cleaner Production, 484, 144284.