Impact of hydrogen addition on diesel engine performance, emissions, combustion, and vibration characteristics using a Prosopis Juliflora methyl ester-decanol blend as pilot fuel

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The research primarily focuses on investigating the impact of hydrogen induction on parameters of a compression ignition (CI) engine utilizing biodiesel blended with decanol, up to knock limit. The utilization of non-edible oil, exemplified by Prosopis Juliflora seed oil (JFO), presents inherent challenges due to its elevated viscosity, limited atomization, and suboptimal combustion attributes. However, the conversion of JFO into Prosopis Juliflora methyl ester (JFME) biodiesel substantially ameliorates its fuel characteristics, although it still exhibits relatively lower performance in comparison to conventional diesel fuel. To enhance the attributes of JFME blends, decanol is mixed with 20 % on volumetric basis (referred to as D20). Furthermore, the introduction of hydrogen into the engine's intake manifold is employed to bolster performance and curtail emissions. Different hydrogen flow rates, spanning from 2.5 to 10 litres per minute (lpm), are assessed in conjunction with the D20 biodiesel blend. The inclusion of hydrogen into D20 blends yields an enhancement in brake thermal efficiency (BTE), coupled with reductions in hydrocarbon (HC), carbon monoxide (CO), and smoke emissions. However, it should be noted that hydrogen's notable flame velocity and higher calorific value engender escalated combustion temperatures and an associated rise in Nitric oxide (NO) emission. The research also encompasses an evaluation of engine vibration during dual-fuel operation, revealing a proportional increase in engine vibration with heightened rates of hydrogen induction. In summation, the utilization of D20 in conjunction with hydrogen at a rate of 10 lpm emerges as a viable approach for operating diesel engines in a dual-fuel mode. © 2023 Hydrogen Energy Publications LLC

Açıklama

Anahtar Kelimeler

Biofuel, Diesel, Hydrogen İnduction, No Reduction, Oxygenate Additives

Kaynak

International Journal of Hydrogen Energy

WoS Q Değeri

Scopus Q Değeri

Q1

Cilt

Sayı

Künye