Yazar "Khan, Khalid Mohammed" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Alpha-Mangostin and its nano-conjugates induced programmed cell death in Acanthamoeba castellanii belonging to the T4 genotype(Springer, 2023) Ahmed, Usman; Ong, Seng-Kai; Tan, Kuan Onn; Khan, Khalid Mohammed; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah; Alawfi, Bader SaleemAcanthamoeba are free living amoebae that are the causative agent of keratitis and granulomatous amoebic encephalitis. Alpha-Mangostin (AMS) is a significant xanthone; that demonstrates a wide range of biological activities. Here, the anti-amoebic activity of alpha-Mangostin and its silver nano conjugates (AMS-AgNPs) were evaluated against pathogenic A. castellanii trophozoites and cysts in vitro. Amoebicidal assays showed that both AMS and AMS-AgNPs inhibited the viability of A. castellanii dose-dependently, with an IC50 of 88.5 +/- 2.04 and 20.2 +/- 2.17 mu M, respectively. Both formulations inhibited A. castellanii-mediated human keratinocyte cell cytopathogenicity. Functional assays showed that both samples caused apoptosis through the mitochondrial pathway and reduced mitochondrial membrane potential and ATP production, while increasing reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome-c reductase in the cytosol. Whole transcriptome sequencing of A. castellanii showed the expression of 826 genes, with 447 genes being up-regulated and 379 genes being down-regulated post treatment. The Kyoto Encyclopedia of Genes and Genomes analysis showed that the majority of genes were linked to apoptosis, autophagy, RAP1, AGE-RAGE and oxytocin signalling pathways. Seven genes (PTEN, H3, ARIH1, SDR16C5, PFN, glnA GLUL, and SRX1) were identified as the most significant (Log2 (FC) value 4) for molecular mode of action in vitro. Future in vivo studies with AMS and nanoconjugates are needed to realize the clinical potential of this work.Öğe Effect of embelin on inhibition of cell growth and induction of apoptosis in Acanthamoeba castellanii(Springer, 2023) Ahmed, Usman; Ong, Seng-Kai; Khan, Khalid Mohammed; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed; Shaikh, Mohd Farooq; Alawfi, Bader SaleemAcanthamoeba castellanii is the causative agent of fatal encephalitis and blinding keratitis. Current therapies remain a challenge, hence there is a need to search for new therapeutics. Here, we tested embelin (EMB) and silver nanoparticles doped with embelin (EMB-AgNPs) against A. castellanii. Using amoebicidal assays, the results revealed that both compounds inhibited the viability of Acanthamoeba, having an IC50 of 27.16 +/- 0.63 and 13.63 +/- 1.08 mu M, respectively, while causing minimal cytotoxicity against HaCaT cells in vitro. The findings suggest that both samples induced apoptosis through the mitochondria-mediated pathway. Differentially expressed genes analysis showed that 652 genes were uniquely expressed in treated versus untreated cells, out of which 191 were significantly regulated in the negative control vs. conjugate. Combining the analysis, seven genes (ARIH1, RAP1, H3, SDR16C5, GST, SRX1, and PFN) were highlighted as the most significant (Log2 (FC) value +/- 4) for the molecular mode of action in vitro. The KEGG analysis linked most of the genes to apoptosis, the oxidative stress signaling pathway, cytochrome P450, Rap1, and the oxytocin signaling pathways. In summary, this study provides a thorough framework for developing therapeutic agents against microbial infections using EMB and EMB-AgNPs.Öğe Lactase can target cellular differentiation of Acanthamoeba castellanii belonging to the T4 genotype(Springer, 2024) Simau, Fathimath Afaaf; Ahmed, Usman; Khan, Khalid Mohammed; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah; Alharbi, Ahmad M.; Alfahemi, HasanThe free living Acanthamoeba spp. are ubiquitous amoebae associated with potentially blinding disease known as Acanthamoeba keratitis (AK) and a fatal central nervous system infection granulomatous amoebic encephalitis (GAE). With the inherent ability of cellular differentiation, it can phenotypically transform to a dormant cyst form from an active trophozoite form. Acanthamoeba cysts are highly resistant to therapeutic agents as well as contact lens cleaning solutions. One way to tackle drug resistance against Acanthamoeba is by inhibiting the formation of cysts from trophozoites. The biochemical analysis showed that the major component of Acanthamoeba cyst wall is composed of carbohydrate moieties such as galactose and glucose. The disaccharide of galactose and glucose is lactose. In this study, we analyzed the potential of lactase enzyme to target carbohydrate moieties of cyst walls. Amoebicidal assessment showed that lactase was ineffective against trophozoite of A. castellanii but enhanced amoebicidal effects of chlorhexidine. The lactase enzyme did not show any toxicity against normal human keratinocyte cells (HaCaT) at the tested range. Hence, lactase can be used for further assessment for development of potential therapeutic agents in the management of Acanthamoeba infection as well as formulation of effective contact lens disinfectants.Öğe Malabaricones from the fruit of Myristica cinnamomea King as potential agents against Acanthamoeba castellanii(Elsevier, 2023) Ahmed, Usman; Sivasothy, Yasodha; Khan, Khalid Mohammed; Khan, Naveed Ahmed; Wahab, Siti Mariam Abdul; Awang, Khalijah; Othman, Muhamad AqmalAcanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 +/- 4.62 mu g/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 +/- 17.41 mu M) and Malabaricone C (IC50 of 49.95 +/- 6.33 mu M) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.Öğe Potential anti-amoebic effects of synthetic 1,4-benzothiazine derivatives against Acanthamoeba castellanii(Cell Press, 2024) Alishba; Ahmed, Usman; Taha, Muhammad; Khan, Naveed Ahmed; Salar, Uzma; Khan, Khalid Mohammed; Anwar, AyazA rare but lethal central nervous system disease known as granulomatous amoebic encephalitis (GAE) and potentially blinding Acanthamoeba keratitis are diseases caused by free-living Acanthamoeba. Currently, no therapeutic agent can completely eradicate or prevent GAE. Synthetic compounds are a likely source of bioactive compounds for developing new drugs. This study synthesized seventeen 1,4-benzothiazine derivatives (I -XVII) by a base-catalyzed one-pot reaction of 2-amino thiophenol with substituted bromo acetophenones. Different spectroscopic techniques, such as EI-MS, H-1-, and C-13 NMR (only for the new compounds), were used for the structural characterization and conformation of compounds. These compounds were assessed for the first time against Acanthamoeba castellanii. All compounds showed anti-amoebic potential in vitro against A. castellanii, reducing its ability to encyst and excyst at 100 mu M. Compounds IX, X, and XVI showed the most potent activities among all derivatives and significantly reduced the viability to 5.3 x 10(4) (p < 0.0003), 2 x 10(5) (p < 0.006), and 2.4 x 10(5) (p < 0.002) cells/mL, respectively. The cytotoxicity profile revealed that these molecules showed lower to moderate cytotoxicity, i.e., 36 %, 2 %, and 21 %, respectively, against human keratinocytes in vitro. These results indicate that 1,4-benzothiazines showed potent in vitro activity against trophozoites and cysts of A. castellanii. Hence, these 1,4-benzothiazine derivatives should be considered to develop new potential therapeutic agents against Acanthamoeba infections.