Yazar "Lee, Seunghye" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Prediction compressive strength of cement-based mortar containing metakaolin using explainable Categorical Gradient Boosting model(Elsevier Ltd, 2022) Nguyen, Ngoc-Hien; Tong, Kien T.; Lee, Seunghye; Karamanlı, Armağan; Vo, Thuc P.Although machine learning models have been employed for the compressive strength (CS) of cement-based mortar containing metakaolin, it is difficult to understand how they work due to “black-box” nature. In order to explain the involved mechanism, Categorical Gradient Boosting (CatBoost) model with feature importance, feature interaction, partial dependence plot (PDP) and SHapley Additive exPlanations (SHAP) is proposed in this paper. A dataset consisting of 424 samples with six input variables is used to build the CatBoost model, which has optimal performance by tuning a set of seven hyper-parameters using sequential model-based optimization. Five quantitative measures (R2, MAE, RMSE, a10-, a20-index) are employed to evaluate the accuracy and the obtained results are superior to the previous study. It is from feature importance that the most significant input variable involving the CS is water-to-binder ratio, followed by age of specimen and cement grade. The strongest feature interaction is between water-to-binder ratio and metakaolin. A comprehensive parametric study is carried out via SHAP and PDP to investigate the effects of all input variables on the CS of cement-based mortar.Öğe Super learner machine-learning algorithms for compressive strength prediction of high performance concrete(John Wiley and Sons Inc, 2022) Lee, Seunghye; Nguyen, Ngoc-Hien; Karamanlı, Armağan; Lee, Jaehong; Vo, Thuc P.Because the proportion between the compressive strength of high-performance concrete (HPC) and its composition is highly nonlinear, more advanced regression methods are demanded to obtain better results. Super learner models, which are based on several ensemble methods including random forest regression (RFR), an adaptive boosting (AdaBoost), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), categorical gradient Boosting (CatBoost), are used to solve this complicated problem. A grid search method is employed to determine the best set of hyper-parameters of each ensemble algorithm. Two super learner models, which combine all six models or select the top three effective ones as the base learners, are then proposed to develop an accurate approach to estimate the compressive strength of HPC. The results on four popular datasets show significant improvement of the proposed super learner models in terms of prediction accuracy. It also reveals that their trained models always perform better than other methods since their errors (MAE, MSE, RMSE) are always much lower and values of R2 are higher than those of the previous studies. The proposed super learner models can be used to provide a reliable tool for mixture design optimization of the HPC. © 2022 The Authors. Structural Concrete published by John Wiley & Sons Ltd on behalf of International Federation for Structural Concrete.