Super learner machine-learning algorithms for compressive strength prediction of high performance concrete

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

John Wiley and Sons Inc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Because the proportion between the compressive strength of high-performance concrete (HPC) and its composition is highly nonlinear, more advanced regression methods are demanded to obtain better results. Super learner models, which are based on several ensemble methods including random forest regression (RFR), an adaptive boosting (AdaBoost), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), categorical gradient Boosting (CatBoost), are used to solve this complicated problem. A grid search method is employed to determine the best set of hyper-parameters of each ensemble algorithm. Two super learner models, which combine all six models or select the top three effective ones as the base learners, are then proposed to develop an accurate approach to estimate the compressive strength of HPC. The results on four popular datasets show significant improvement of the proposed super learner models in terms of prediction accuracy. It also reveals that their trained models always perform better than other methods since their errors (MAE, MSE, RMSE) are always much lower and values of R2 are higher than those of the previous studies. The proposed super learner models can be used to provide a reliable tool for mixture design optimization of the HPC. © 2022 The Authors. Structural Concrete published by John Wiley & Sons Ltd on behalf of International Federation for Structural Concrete.

Açıklama

Anahtar Kelimeler

Compressive Strength, Ensemble Learning Algorithms, High-Performance Concrete (HPC), Machine Learning, Super Learner

Kaynak

Structural Concrete

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

Sayı

Künye

Lee, S., Nguyen, N. H., Karamanli, A., Lee, J., & Vo, T. P. (2022). Super learner machine‐learning algorithms for compressive strength prediction of high performance concrete. Structural Concrete.