Yazar "Ozdemir, B." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effects of roller and hammer milling on the yield and physicochemical properties of fibre-rich fractions from biofortified and non-biofortified hull-less barley(Academic Press Ltd- Elsevier Science Ltd, 2020) Acar, O.; Izydorczyk, M. S.; Kletke, J.; Yazici, M. A.; Ozdemir, B.; Cakmak, I.; Köksel, HamitThis study was carried out to compare fibre-rich fractions (FRF) yields of two milling systems from hull-less barley cv. Yalin with and without biofortification (Yalin (+) and (-)) and investigate effect of biofortification (Zn, I, Se) on composition and physicochemical properties of fractions. Biofortification increased Zn, I, Se contents considerably. FRF yields of roller mill (FRFR) were 55.2 and 56.2 g/100g while those of hammer mill (FRFH) were 43.7 and 45.9 g/100g for Yalin (-) and Yalin (+), respectively. Pin-milling was applied for further enrichment. The yields of enriched fraction E-FRFR were 25.9 and 26.0 g/100g while yields of enriched fraction E-FRFH were 22.8 and 24.1 g/100g for Yalin (-) and Yalin (+), respectively. Beta-glucan contents of FRFR were 7.20 and 6.91 g/100g while those of FRFH were 8.91 and 8.09 g/100g for Yalin (-) and Yalin (+), respectively. Similarly, beta-glucan contents of E-FRFR were 12.91 and 12.33 g/100g while those of E-FRFH were 14.17 and 13.02 g/100g for Yalin (-) and Yalin (+), respectively. Enrichment increased RVA viscosities, porosities and decreased bulk densities, mass median diameters and dispersions. It can be concluded that barley grains that underwent biofortification can also be employed to give beta-glucan enriched milling fractions.Öğe An investigation on minerals, arabinoxylans and other fibres of biofortified hull-less barley fractions obtained by two milling systems(Academic Press, 2020) Acar, Oguz; Izydorczyk, Marta S.; McMillan, Tricia L.; Yazici, Melik; Ozdemir, B.; Cakmak, Ismail; Köksel, HamitThe aims of the present study were to compare arabinoxylan, glucomannan, arabinogalactan, dietary fibre and mineral contents of fibre rich and enriched-fibre rich fractions (FRF, E-FRF) obtained by two milling systems from biofortified (+) and non-biofortified (?) hull-less barley cultivar, Yalin and determine impact of biofortification (Zn, I, Se). Arabinoxylan contents and recoveries of FRF obtained by roller mill (FRFR) were 6.52% and 6.70%; 82.6% and 83.3% while those of FRF obtained by hammer mill (FRFH) were 7.36% and 7.24%; 73.9% and 73.5% for Yalin (?) and Yalin (+), respectively. Likewise, arabinoxylan contents and recoveries of E-FRFR were 11.91, 11.66%; 70.8% and 67.2% while those of E-FRFH were 11.70%, 12.13%; 61.3% and 64.9% for Yalin (?) and Yalin (+), respectively. Arabinogalactan contents of E-FRFR and E-FRFH were comparable (1.32–1.45%) for both Yalin samples. Their glucomannan contents were higher than arabinogalactan contents (1.79–1.90%). Furthermore, total dietary fibre contents of E-FRFR and E-FRFH were determined as 2.4–2.7 fold higher than their whole grain Yalin samples. Zinc, iodine, selenium contents (22 mg kg?1, 16 ?g kg?1, 122 ?g kg?1) of the whole grain of Yalin (?) increased through biofortification and milling and reached to 59 mg kg?1, 383 ?g kg?1, 345 ?g kg?1 in E-FRFR of Yalin (+), respectively.