Yazar "Tunga, Burcu" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An efficient feature extraction approach for hyperspectral images using wavelet high dimensional model representation(TAYLOR & FRANCIS LTD, 2022) Tuna, Süha; Özay, Evrim Korkmaz; Tunga, Burcu; Gürvit, Ercan; Tunga, Mehmet AlperHyperspectral (HS) Imagery helps to capture information using specialized sensors to extract detailed data at numerous narrow wavelengths. Hyperspectral imaging provides both spatial and spectral characteristics of regions or objects for subsequent analysis. Unfortunately, various noise sources decrease the interpretability of these images as well as the correlation between neighbouring pixels, hence both reduce the classification performance. This study focuses on developing an ensemble algorithm that enables to denoise the spectral signals while decorrelating the spatio-spectral features concurrently. The developed method is called Wavelet High Dimensional Model (W-HDMR) and combines High Dimensional Model Representation (HDMR) with the Discrete Wavelet Transform (DWT). Through W-HDMR, denoised and decorrelated features are extracted from the HS cubes. HDMR decorrelates each dimension in HS data while DWT denoises the spectral signals. The classification performance of W-HDMR as a new feature extraction technique for HS images is assessed by exploiting a Support Vector Machines algorithm. The results indicate that the proposed W-HDMR method is an efficient feature extraction technique and is considered an adequate tool in the HS classification problem.Öğe A novel multistage CAD system for breast cancer diagnosis(Springer London Ltd, 2023) Karacan, Kubra; Uyar, Tevfik; Tunga, Burcu; Tunga, M. AlperComputer-aided diagnosis (CAD) systems are widely used to diagnose breast cancer using mammography screening. In this research, we proposed a new multistage CAD system based on image decomposition with High-Dimensional Model Representation (HDMR) which is a divide-and-conquer algorithm. We used digital mammograms from Digital Database for Screening Mammography as dataset. We neglected BIRADS classification and used a brand-new clustering based on HDMR constant and breast size. To find the best performance of HDMR-based CAD system, we compared different pre-processing settings such as contrast enhancement with CLAHE and HDMR, feature extraction with HDMR, feature scaling, dimension reduction with Linear Discriminant Analysis. We used several Machine Learning algorithms and measured the performance of proposed system for normal-benign-malign classification, cancer detection, mass detection and found that the proposed system achieves 66%, 71% and 87% accuracy, respectively. We were able to achieve 92% accuracy, 100% sensitivity and 91% specificity in specific clusters. These results are comparable with deep learning-based methods although we simplified the pipeline and used brand-new HDMR-based processes.