An efficient feature extraction approach for hyperspectral images using wavelet high dimensional model representation
Yükleniyor...
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
TAYLOR & FRANCIS LTD
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Hyperspectral (HS) Imagery helps to capture information using specialized sensors to extract detailed data at numerous narrow wavelengths. Hyperspectral imaging provides both spatial and spectral characteristics of regions or objects for subsequent analysis. Unfortunately, various noise sources decrease the interpretability of these images as well as the correlation between neighbouring pixels, hence both reduce the classification performance. This study focuses on developing an ensemble algorithm that enables to denoise the spectral signals while decorrelating the spatio-spectral features concurrently. The developed method is called Wavelet High Dimensional Model (W-HDMR) and combines High Dimensional Model Representation (HDMR) with the Discrete Wavelet Transform (DWT). Through W-HDMR, denoised and decorrelated features are extracted from the HS cubes. HDMR decorrelates each dimension in HS data while DWT denoises the spectral signals. The classification performance of W-HDMR as a new feature extraction technique for HS images is assessed by exploiting a Support Vector Machines algorithm. The results indicate that the proposed W-HDMR method is an efficient feature extraction technique and is considered an adequate tool in the HS classification problem.
Açıklama
Anahtar Kelimeler
Hyperspectral Data, Feature Extraction, Classification, Wavelets, High Dimensional Model Representation
Kaynak
INTERNATIONAL JOURNAL OF REMOTE SENSING
WoS Q Değeri
Q2
Scopus Q Değeri
Cilt
43
Sayı
19-24
Künye
Tuna, S., Korkmaz Özay, E., Tunga, B., Gürvit, E., & Tunga, M. A. (2022). An efficient feature extraction approach for hyperspectral images using Wavelet High Dimensional Model Representation. International Journal of Remote Sensing, 43(19-24), 6899-6920.