Yazar "Vellaiyan, Suresh" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Inedible oil feedstocks for biodiesel production: A review of production technologies and physicochemical properties(Elsevier B.V., 2022) Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Subbiah, Ganesan; Vellaiyan, Suresh; Nagappan, Beemkumar; Varuvel, Edwin Geo; Thangaraja, JeyaseelanBiodiesel emits lesser harmful pollutant emissions than renewable and biodegradable ones compared diesel. Research confirms that edible products and crops are the major sources of biofuel production. Excessive usage of these crops leads to higher production costs, economic imbalance, and depletion of food supply. Biofuel production from inedible sources shall lower the drawbacks of edible products and crops. Inedible feedstocks are the sustainable source of biofuel production as they are mostly grown on waste/abandoned land, produce similar or higher yields than edible feedstocks, and are fairly cost-effective. Hence this present work reviews the challenges and possibilities of employing inedible oil and products as a potential feedstock for biofuel production. Salient features of inedible oil such as production technologies, cost and benefits, fatty acid and physicochemical properties and oil extraction technology are reviewed from the latest literature. The outcome of this study suggests that there is a huge prospect of utilizing inedible oil as a reliable feedstock for biofuel generation. Among various production processes, scCO2 extraction technology proved to reduce inedible oil's moisture by 70% and FFA content by 62%, with a higher conversion rate of about 97%, as methanol in supercritical conditions has lesser interaction with the FFA of inedible oil. Inedible feedstocks are effective, non-toxic and safe in biofuel production. However, there exists a challenge in restricting its development in large-scale commercialization.Öğe Processing and utilization of an eco-friendly oil as heat transfer fluid derived from camelina seeds(WILEY, 2022) Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Vellaiyan, Suresh; Jayabal, Ravikumar; Varuvel, Edwin Geo; Natrayan, L.Bio-oil from nonedible sources is an ideal alternative for thermal oil in solar and heat applications. The significant merits of bio-oil in high-temperature applications are less volatile, higher availability, non-hazardous, environmentally friendly, and renewable resources. Heat transmission fluids (HF) are a medium that transfers heat in all solar heating applications. Generally, mineral oils derived from crude oil act as HF, harming humans and the environment during their disposal. This negative effect shall be lowered by replacing conventional fluids with bio-oil developed from vegetable or synthetic oil. Of late, fats obtained from waste and inedible sources are promising in solar applications as they eliminate associated issues. This study uses eco-friendly bio-oil as a heat transfer fluid obtained from camelina oil. Camelina oil is of inedible vegetable source and is produced by cold pressing from the Camelina sativa seeds. Heat transfer fluid is produced by subjecting raw camelina oil to a base catalyst reaction. No work till date has investigated the camelina oil as an eco-friendly heat transfer fluid. Various parameters for obtaining a higher yield of fluid with lower reagents waste are analyzed in this study. After conversion, the camelina oil was reviewed for its suitability as a heat transfer fluid. Variations in critical properties such as density, thermal conductivity, specific heat capacity, and dynamic viscosity with temperature are analyzed. Results revealed that the properties of bio-oil provided are comparable with conventional fluids. Based on the results, the maximum reaction efficiency of about 93% was achieved at 600 rpm of agitation speed, 1% wt of NaOH concentration, 5.5:1 molar proportion, and 65 degrees C of reaction temperature. The critical properties of camelina bio-oil improved with temperature and depend on the composition of fatty acids. Hence, CME acts as an improved heat transfer fluid and shall be a probable applicant to replace the synthetic fluid in heating applications.Öğe Production of Raphanus Sativus Biodiesel and Its Performance Assessment in a Thermal Barrier-Coated Agriculture Sector Diesel Engine(Wiley-V C H Verlag Gmbh, 2023) Ravikumar, Venkatachalam; Senthilkumar, Duraisamy; Vellaiyan, Suresh; Saravanan, Chidambaram Ganapathy; Vikneswaran, Malaiperumal; Bai, Femilda Josephin Joseph Shobana; Varuvel, Edwin GeoHerein, in order to estimate the optimized process specifications, an empirical study is done for biodiesel production, performance of standard and coated engine, combustion, and discharge aspects of Raphanus sativus (radish) biodiesel. Optimization process parameters of biodiesel production are done using the response surface method. The importance of this study is that optimized biodiesel production is used to improve the biodiesel properties and fatty acid content to find suitable vegetable oil as well as a new coating material for sustainable development of the country in the field of agriculture and ecological conditions. The mechanism used in this research work is a coating for internal combustion engine components done with partially stabilized zirconia, aluminum-20% silicon carbide (Al-20%SiC), and titanium dioxide that acts as a ceramic composite settled above the coating that has a thickness of 450 mu m by the technique called air plasma spray for test purpose. To increase the performance of an engine and reduce the emission particles like smoke density, carbon monoxide, and hydrocarbon except NOx, the partially stabilized zirconia, aluminum-20% silicon carbide (Al-20%SiC) coated engine is used under various compositions of radish biodiesel and clean diesel. To reduce NOx, the engine operation is carried out along with the TiO2 coated combustion chamber steam, and water injection technique is added to overcome the NOx formation. From this study, the resulting factor shows that adding 25% radish biodiesel (B25) and 75% clean diesel shows a reasonable reduction in emissions with comparatively better performance and combustion in the engine under consideration.