Enhancing the Multiclass Image Classification Accuracy using Binary Classifiers for Semi-Supervised Learning

dc.contributor.authorJadoon, H.K.
dc.contributor.authorJamil, A.
dc.contributor.authorZulfiqar, A.
dc.contributor.authorHameed, A.A.
dc.date.accessioned2024-05-19T14:33:28Z
dc.date.available2024-05-19T14:33:28Z
dc.date.issued2023
dc.departmentİstinye Üniversitesien_US
dc.descriptionCentral Michigan University (CMU);IEEEen_US
dc.description2023 IEEE International Conference on Artificial Intelligence, Blockchain, and Internet of Things, AIBThings 2023 -- 16 September 2023 through 17 September 2023 -- -- 194014en_US
dc.description.abstractImage classification poses a fundamental challenge in deep learning, especially in scenarios where labeled data is scarce but unlabeled data is abundant. Precise pseudo-labels are crucial to facilitate classification in such situations. One common approach involves the use of binary classifiers with a one-vs-all strategy to assign pseudo-labels to unlabeled data, offering the advantage of tailored predictions for each class. However, this method faces challenges, including class imbalance, often requiring oversampling for resolution, and extended training times due to multiple binary classifiers. Our proposed approach addresses the inherent class imbalance in the one-vs-all method, eliminating the need for oversampling. We achieve this by training a single multi-class classifier through a combination of binary classifiers, transfer learning, and fine-tuning while enforcing a stringent prediction threshold for pseudo-labels. This transition to a single multi-class classifier significantly reduces both training duration and storage demands. Our model's effectiveness is rigorously evaluated on two diverse datasets, MNIST, and Fashion MNIST, achieving impressive test accuracies of 95.59% and 84.84%, respectively, for a pseudo-label generation. © 2023 IEEE.en_US
dc.identifier.doi10.1109/AIBThings58340.2023.10292483
dc.identifier.isbn9798350322347
dc.identifier.scopus2-s2.0-85178515043en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/AIBThings58340.2023.10292483
dc.identifier.urihttps://hdl.handle.net/20.500.12713/4242
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2023 IEEE International Conference on Artificial Intelligence, Blockchain, and Internet of Things, AIBThings 2023 - Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz20240519_kaen_US
dc.subjectBinary Classifiersen_US
dc.subjectClass Imbalanceen_US
dc.subjectImage Classificationen_US
dc.subjectPseudo-Label Generationen_US
dc.subjectSemi-Supervised Learningen_US
dc.titleEnhancing the Multiclass Image Classification Accuracy using Binary Classifiers for Semi-Supervised Learningen_US
dc.typeConference Objecten_US

Dosyalar