Matrix theory over ringoids
dc.authorwosid | Borzooei, Rajab Ali/AAE-8211-2021 | |
dc.contributor.author | Rezaei, Akbar | |
dc.contributor.author | Kim, Hee Sik | |
dc.contributor.author | Borzooei, Rajab Ali | |
dc.contributor.author | Saeid, Arsham Borumand | |
dc.date.accessioned | 2024-05-19T14:43:01Z | |
dc.date.available | 2024-05-19T14:43:01Z | |
dc.date.issued | 2023 | |
dc.department | İstinye Üniversitesi | en_US |
dc.description.abstract | We will study the notion of right distributive ringoids over a field which are neither rings, semi-rings, semi-hyperrings nor near-rings. Matrices over ringoids are defined, and new concepts such as top-row-determinate and down-row-determinate related to 2 x 2 matrices over a ringoid are introduced. Moreover, we investigate the notions of the (strongly, (very-) weak) orthogonality of vectors over a ringoid. Beside, we discuss the notion of incident vectors and define the concept of alpha -K-sphere on a ringoid, where K is a field and investigate some of their properties. Finally, we show that in a commutative ringoid all of the vectors are strongly orthogonal. | en_US |
dc.identifier.doi | 10.2298/FIL2330275R | |
dc.identifier.endpage | 10288 | en_US |
dc.identifier.issn | 0354-5180 | |
dc.identifier.issue | 30 | en_US |
dc.identifier.startpage | 10275 | en_US |
dc.identifier.uri | https://doi.org10.2298/FIL2330275R | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/5311 | |
dc.identifier.volume | 37 | en_US |
dc.identifier.wos | WOS:001097473700001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Univ Nis, Fac Sci Math | en_US |
dc.relation.ispartof | Filomat | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | 20240519_ka | en_US |
dc.subject | Left Zero | en_US |
dc.subject | (Right-) Distributive) Ringoid | en_US |
dc.subject | (Linear) Groupoid | en_US |
dc.subject | (Strongly | en_US |
dc.subject | (Very-) Weak) Orthogonal | en_US |
dc.title | Matrix theory over ringoids | en_US |
dc.type | Article | en_US |