Machine learning-based approach for stroke classification using electroencephalogram (EEG) signals

dc.authoridRadwan Qasrawi / 0000-0001-8671-7026en_US
dc.authorscopusidRadwan Qasrawi / 57212263325
dc.authorwosidRadwan Qasrawi / AAA-6245-2019
dc.contributor.authorSawan, Aktham
dc.contributor.authorAwad, Mohammed
dc.contributor.authorQasrawi, Radwan
dc.date.accessioned2022-04-18T14:30:15Z
dc.date.available2022-04-18T14:30:15Z
dc.date.issued2022en_US
dc.departmentİstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractIn recent years, the health care field has heavily relied on the field of computation. The medical decision support system DSS, for instance, helps health professionals obtain accurate and reliable readings and diagnosis of patients’ vital signs. Nowadays, several medical devices allow capturing brain signals, some of these devices are wearable, which enhances signal quality and facilitates access to the signals than the traditional EEG devices. EEG signals are critical for assessing mental health and analyzing brain characteristics as they are able to detect a wide range of nerve-related diseases, such as stroke. This research seeks to study the use of machine learning techniques for the medical diagnosis of stroke through EEG signals obtained from the wearable device ‘MUSE 2.’ Eight ML techniques were used for analysis, the XGboost classifiers outperformed other classifiers in identifying strokes with an accuracy rate of 83.89%. The findings proved a 7.89% improvement on accuracy from the previous study “Predicting stroke severity with a 3-minute recording from the Muse portable EEG studyen_US
dc.identifier.doi10.5220/0010774200003123en_US
dc.identifier.endpage117en_US
dc.identifier.issn2184-4305en_US
dc.identifier.startpage111en_US
dc.identifier.urihttps://doi.org/10.5220/0010774200003123
dc.identifier.urihttps://hdl.handle.net/20.500.12713/2644
dc.identifier.volume1en_US
dc.identifier.wosWOS:000778905500011en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.institutionauthorQasrawi, Radwan
dc.language.isoenen_US
dc.publisherScitepressen_US
dc.relation.ispartofProceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies - BIODEVICESen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectStrokeen_US
dc.subjectElectroencephalogram (EEG)en_US
dc.subjectMachine Learning (ML)en_US
dc.subjectDeep Learning (DL)en_US
dc.subjectMuse 2en_US
dc.subjectWearable Devicesen_US
dc.subjectWavelet Transformationen_US
dc.subjectFourier Transformationen_US
dc.titleMachine learning-based approach for stroke classification using electroencephalogram (EEG) signalsen_US
dc.typeReview Articleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
StrokePaper.pdf
Boyut:
473.6 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: