Auxiliary learning of non-monotonic hyperparameter scheduling system via grid search

dc.authoridAlaa Ali Hameed / 0000-0002-8514-9255en_US
dc.authorscopusidAlaa Ali Hameed / 56338374100
dc.authorwosidAlaa Ali Hameed / ABI-8417-2020
dc.contributor.authorHameed, Alaa Ali
dc.date.accessioned2022-12-02T12:14:30Z
dc.date.available2022-12-02T12:14:30Z
dc.date.issued2022en_US
dc.departmentİstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractRecent advancements in advanced neural networks have given rise to new adaptive learning strategies. Conventional learning strategies suffer from many issues, such as slow convergence and lack of robustness. To fully exploit its potential, these issues must be resolved. Both issues are related to the step-size, and momentum term, which is generally fixed and remains uniform for all weights associated with each network layer. In this study, the recently published Back-Propagation Algorithm with Variable Adaptive Momentum (BPVAM) algorithm has been proposed to overcome these issues and improve effectiveness for classification. The study was conducted on various hyperparameters based on the grid search approach, then the optimal values of hyperparameters have trained these algorithms. Six cases were considered with varying values of the hyperparameter to evaluate the impact of the hyperparameter on the training models. It is empirically proven that the convergence behavior of the model is improved in terms of the mean and standard deviation for accuracy and the sum of squared error (SSE). A comprehensive set of experiments indicated that the BPVAM is a robust and highly efficient algorithm.en_US
dc.identifier.citationHAMİTOĞLU, A. Auxiliary Learning of Non-Monotonic Hyperparameter Scheduling System Via Grid Search. Journal of Intelligent Systems: Theory and Applications, 5(2), 168-177.en_US
dc.identifier.doi10.38016/jista.1153108en_US
dc.identifier.endpage177en_US
dc.identifier.issn2651-3927en_US
dc.identifier.issue2en_US
dc.identifier.startpage168en_US
dc.identifier.trdizinid1122769en_US
dc.identifier.urihttp://dx.doi.org/10.38016/jista.1153108
dc.identifier.urihttps://hdl.handle.net/20.500.12713/3413
dc.identifier.volume5en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.institutionauthorHameed, Alaa Ali
dc.language.isoenen_US
dc.relation.ispartofZeki sistemler teori ve uygulamaları dergisi (Online)en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectUyarlanabilir Sinir Ağlarıen_US
dc.subjectHiperparametreen_US
dc.subjectKararlı Durum Hatasıen_US
dc.subjectOptimizasyonen_US
dc.titleAuxiliary learning of non-monotonic hyperparameter scheduling system via grid searchen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
document (10).pdf
Boyut:
435.95 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: