Solving the Fornberg-Whitham Model Derived from Gilson-Pickering Equations by Analytical Methods

dc.authoridAllahviranloo, Tofigh/0000-0002-6673-3560
dc.authoridSaadati, Reza/0000-0002-6770-6951
dc.authoridRezaei Aderyani, Safoura/0000-0003-3108-6524
dc.authorwosidAllahviranloo, Tofigh/V-4843-2019
dc.authorwosidSaadati, Reza/C-6330-2018
dc.authorwosidRezaei Aderyani, Safoura/AHE-7279-2022
dc.contributor.authorO'Regan, Donal
dc.contributor.authorAderyani, Safoura Rezaei
dc.contributor.authorSaadati, Reza
dc.contributor.authorAllahviranloo, Tofigh
dc.date.accessioned2024-05-19T14:41:38Z
dc.date.available2024-05-19T14:41:38Z
dc.date.issued2024
dc.departmentİstinye Üniversitesien_US
dc.description.abstractThis paper focuses on obtaining traveling wave solutions of the Fornberg-Whitham model derived from Gilson-Pickering equations, which describe the prorogation of waves in crystal lattice theory and plasma physics by some analytical techniques, i.e., the exp-function method (EFM), the multi-exp function method (MEFM) and the multi hyperbolic tangent method (MHTM). We analyze and compare them to show that MEFM is the optimum method.en_US
dc.identifier.doi10.3390/axioms13020074
dc.identifier.issn2075-1680
dc.identifier.issue2en_US
dc.identifier.urihttps://doi.org10.3390/axioms13020074
dc.identifier.urihttps://hdl.handle.net/20.500.12713/5138
dc.identifier.volume13en_US
dc.identifier.wosWOS:001172369500001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.ispartofAxiomsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmz20240519_kaen_US
dc.subjectFornberg-Whitham Modelen_US
dc.subjectGilson-Pickering Equationen_US
dc.subjectAnalytical Methodsen_US
dc.subjectPartial Differential Equationsen_US
dc.titleSolving the Fornberg-Whitham Model Derived from Gilson-Pickering Equations by Analytical Methodsen_US
dc.typeArticleen_US

Dosyalar