Comparison of machine learning based anomaly detection methods for ADS-B system
dc.authorscopusid | Sedat Akyelek / 15833929800 | |
dc.contributor.author | Çevik, Nurşah | |
dc.contributor.author | Akleylek, Sedat | |
dc.date.accessioned | 2025-04-18T06:23:09Z | |
dc.date.available | 2025-04-18T06:23:09Z | |
dc.date.issued | 2025 | |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description.abstract | This paper introduces an anomaly/intrusion detection system utilizing machine learning techniques for detecting attacks in the Automatic Detection System-Broadcast (ADS-B). Real ADS-B messages between Türkiye's coordinates are collected to train and test machine learning models. After data collection and pre-processing steps, the authors generate the attack datasets by using real ADS-B data to simulate two attack scenarios, which are constant velocity in-crease/decrease and gradually velocity increase or decrease attacks. The efficacy of five machine learning algorithms, including decision trees, extra trees, gaussian naive bayes, k-nearest neighbors, and logistic regression, is evaluated across different attack types. This paper demonstrates that tree-based algorithms consistently exhibit superior performance across a spectrum of attack scenarios. Moreover, the research underscores the significance of anomaly or intrusion detection mechanisms for ADS-B systems, highlights the practical viability of employing tree-based algorithms in air traffic management, and suggests avenues for enhancing safety protocols and mitigating potential risks in the airspace domain. | |
dc.identifier.citation | Çevik, N., & Akleylek, S. (2024, April). Comparison of Machine Learning Based Anomaly Detection Methods for ADS-B System. In International Conference on Information Technologies and Their Applications (pp. 275-286). Cham: Springer Nature Switzerland. | |
dc.identifier.doi | 10.1007/978-3-031-73420-5_23 | |
dc.identifier.endpage | 286 | |
dc.identifier.isbn | 978-303173419-9 | |
dc.identifier.issn | 18650929 | |
dc.identifier.scopus | 2-s2.0-85207843987 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 275 | |
dc.identifier.uri | http://dx.doi.org/10.1007/978-3-031-73420-5_23 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/6328 | |
dc.identifier.volume | 2226 | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Akleylek, Sedat | |
dc.institutionauthorid | Sedat Akyelek / 0000-0001-7005-6489 | |
dc.language.iso | en | |
dc.publisher | Springer science and business media deutschland GmbH | |
dc.relation.ispartof | Communications in computer and information science | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | ADS-B | |
dc.subject | Anomaly Detection System | |
dc.subject | Avionics Security | |
dc.subject | Cyber Security | |
dc.subject | IDS | |
dc.subject | Intrusion Detection System | |
dc.subject | Machine Learning | |
dc.title | Comparison of machine learning based anomaly detection methods for ADS-B system | |
dc.type | Other |
Dosyalar
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: