Real-time web-based International Flight Tickets Recommendation System via Apache Spark

dc.authoridMalkawi, Malek/0000-0002-6588-9184
dc.authorwosidMalkawi, Malek/IYJ-0040-2023
dc.contributor.authorMalkawi, Malek
dc.contributor.authorAlhajj, Reda
dc.date.accessioned2024-05-19T14:39:06Z
dc.date.available2024-05-19T14:39:06Z
dc.date.issued2023
dc.departmentİstinye Üniversitesien_US
dc.descriptionIEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI) -- AUG 04-06, 2023 -- Bellevue, WAen_US
dc.description.abstractTraveling by airplane has become more popular with advanced technology. The tickets can be booked effortlessly via airlines corporation's online platforms. However, recommending the best airline ticket according to the buyer's demands is a challenging task owing to the unexpected fluctuations in the price depending on various reasons. Traditional recommender suggestions are optimized for predicting the price for a specific time or estimating the period of the lowest price. However, considering the sudden changes is an essential matter to increase the accuracy. In this work, we present a web-based real-time system to recommend the most suitable ticket regardless of the continuous changes in the prices. Apache Spark has been used to analyze the data obtained from the international airline web pages. Besides the ease of use of the system, it helps the customer to buy the flight ticket at the lowest price for the desired period and destination. Based on the proposed model, using Python programming language, Flask web server, and Apache Spark, we design and implement the international ticket recommendation system with the MVC design pattern.en_US
dc.description.sponsorshipIEEE,IEEE Comp Soc,Soc Informat Reuse & Integrat,IEEE TCMCen_US
dc.identifier.doi10.1109/IRI58017.2023.00055
dc.identifier.endpage282en_US
dc.identifier.isbn979-8-3503-3458-6
dc.identifier.issn2835-5768
dc.identifier.startpage279en_US
dc.identifier.urihttps://doi.org10.1109/IRI58017.2023.00055
dc.identifier.urihttps://hdl.handle.net/20.500.12713/4700
dc.identifier.wosWOS:001063198500048en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherIeee Computer Socen_US
dc.relation.ispartof2023 Ieee 24th International Conference on Information Reuse and Integration For Data Science, Irien_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz20240519_kaen_US
dc.subjectApache Sparken_US
dc.subjectReal-Time Recommendationen_US
dc.subjectInternational Airline Ticketen_US
dc.subjectAirfare Priceen_US
dc.subjectWeb-Based Systemen_US
dc.titleReal-time web-based International Flight Tickets Recommendation System via Apache Sparken_US
dc.typeConference Objecten_US

Dosyalar