Harnessing Fe2O3 to improve HAP composites: Investigating radiation shielding, mechanical attributes, and magnetic field effects

dc.authorscopusidHesham M.H. Zakaly / 57196235532
dc.authorwosidHesham M.H. Zakaly / GFQ-4612-2022
dc.contributor.authorAlmousa, N.
dc.contributor.authorMalidarreh, Roya Boudaghi
dc.contributor.authorIssa, Shams A.M.
dc.contributor.authorKhandaker, Mayeen Uddin
dc.contributor.authorAkkurt, İskender
dc.contributor.authorZakaly, Hesham M.H.
dc.date.accessioned2025-04-18T10:13:45Z
dc.date.available2025-04-18T10:13:45Z
dc.date.issued2025
dc.departmentİstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü
dc.description.abstractHydroxyapatite (HAP) bio-composites play a prominent role in addressing the reparative and replacement needs of human bone and dental tissues. Despite the suboptimal mechanical characteristics inherent in pure HAP, strength and durability enhancements have been achieved by incorporating various alloys and materials. The provided study delves into the radiation shielding and mechanical attributes of Fe2O3-reinforced HAP composites intended for use as implants, featuring Fe2O3 concentrations at 0.0, 2.5, 5.0, and 7.5 wt%. In addition, by leveraging the robust FLUKA Monte Carlo simulation code, the study explores the composites' response to the magnetic field. The findings suggest that augmenting the Fe2O3 content improves radiation shielding and mechanical properties in the chosen samples. Furthermore, in the absence of a magnetic field, the particles' spatial distribution (contour curves) exhibits symmetry along the X-axis. Nonetheless, a discernible pattern becomes apparent upon exposure to a magnetic field of Bx = 5 micro Tesla. The data extracted from this article can be used for medical and therapeutic applications and subsequent studies. © 2024 Elsevier Ltd
dc.description.sponsorshipThe authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2024R111), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
dc.identifier.citationAlmousa, N., Malidarreh, R. B., Issa, S. A., Khandaker, M. U., Akkurt, I., & Zakaly, H. M. (2025). Harnessing Fe2O3 to improve HAP composites: Investigating radiation shielding, mechanical attributes, and magnetic field effects. Radiation Physics and Chemistry, 229, 112434.
dc.identifier.doi10.1016/j.radphyschem.2024.112434
dc.identifier.issn0969806X
dc.identifier.scopus2-s2.0-85211046594
dc.identifier.scopusqualityQ1
dc.identifier.urihttp://dx.doi.org/10.1016/j.radphyschem.2024.112434
dc.identifier.urihttps://hdl.handle.net/20.500.12713/6998
dc.identifier.volume229
dc.indekslendigikaynakScopus
dc.institutionauthorZakaly, Hesham M.H.
dc.institutionauthoridHesham M.H. Zakaly / 0000-0002-7645-9964
dc.language.isoen
dc.publisherElsevier Ltd.
dc.relation.ispartofRadiation Physics and Chemistry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFLUKA Environment
dc.subjectHAP Bio-Composite
dc.subjectMagnetic Field
dc.titleHarnessing Fe2O3 to improve HAP composites: Investigating radiation shielding, mechanical attributes, and magnetic field effects
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
1-s2.0-S0969806X24009265-main.pdf
Boyut:
8.34 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: