Basics of heat transfer: Conduction
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this chapter the fundamental concepts of thermodynamics are presented. The relation of heat to other forms of energy and the energy balance is also discussed. As a system moves from one equilibrium state to another, thermodynamics can provide the information about the amount of heat transfer. It cannot, however, provide any information on how long the process will take. The design engineers, however, are more interested in the rate of heat transfer. Heat transfer can take place through conduction, convection, and radiation. This chapter further discusses the heat transfer through conduction in detail. It is well known that heat transfer through a medium has magnitude as well as direction. The heat conduction rate in a given direction is proportional to the temperature gradient, that is, the temperature varies with distance in the given direction. In general, heat transfer is three-dimensional and time dependent. The temperature in a medium varies with position as well as with time. If the temperature is independent of time, then conduction is in a steady state otherwise it is in a transient state. This chapter also discusses conduction through plane/composite wall, composite cylinder, and fins. For simplicity the analysis is carried out in one dimension under steady-state conditions. Heat conduction under transient conditions for a lumped system is also discussed. © 2023 Elsevier Inc. All rights reserved.
Açıklama
Anahtar Kelimeler
Conduction, Heat Transfer, Steady State, Thermodynamics, Transient State
Kaynak
Handbook of Thermal Management Systems: E-Mobility and Other Energy Applications
WoS Q Değeri
Scopus Q Değeri
N/A