Artificial intelligence approach for modeling house price prediction
dc.authorid | Alaa Ali Hameed / 0000-0002-8514-9255 | en_US |
dc.authorscopusid | Alaa Ali Hameed / 56338374100 | en_US |
dc.authorwosid | Alaa Ali Hameed / ABI-8417-2020 | |
dc.contributor.author | Çekiç, Melihşah | |
dc.contributor.author | Korkmaz, Kübra Nur | |
dc.contributor.author | Mukus, Habib | |
dc.contributor.author | Hameed, Alaa Ali | |
dc.contributor.author | Jamil, Akhtar | |
dc.contributor.author | Soleimani, Faezeh | |
dc.date.accessioned | 2022-11-07T07:26:28Z | |
dc.date.available | 2022-11-07T07:26:28Z | |
dc.date.issued | 2022 | en_US |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description.abstract | Indexed keywords SciVal Topics Abstract Real estate has a vast market volume across the globe. This domain has been growing significantly in the past few decades. An accurate prediction can help buyers, and other decision-makers make better decisions. However, developing a model that can effectively predict house prices in complex environments is still a challenging task. This paper proposes machine learning models for the accurate prediction of real estate house prices. Furthermore, we investigated the feature importance and various data analysis methods to improve the prediction accuracy. Linear Regression, Decision Tree, XGBoost, Extra Trees, and Random Forest were used in this study. For all models, hyperparameters were first calculated using k-fold cross-validation, and then they were trained to apply to test data. The models were tested on the Boston housing dataset. The proposed method was evaluated using Root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) metrics. | en_US |
dc.identifier.citation | Cekic, M., Korkmaz, K. N., Mukus, H., Hameed, A. A., Jamil, A., & Soleimani, F. (2022). Artificial intelligence approach for modeling house price prediction. Paper presented at the 2022 2nd International Conference on Computing and Machine Intelligence, ICMI 2022 - Proceedings, doi:10.1109/ICMI55296.2022.9873784 | en_US |
dc.identifier.doi | 10.1109/ICMI55296.2022.9873784 | en_US |
dc.identifier.scopus | 2-s2.0-85139083101 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://doi.org/10.1109/ICMI55296.2022.9873784 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/3243 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Hameed, Alaa Ali | |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 2022 2nd International Conference on Computing and Machine Intelligence, ICMI 2022 - Proceedings | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Convolutional Neural (CNN) | en_US |
dc.subject | Convolutional Neural Network Real Estate Price Prediction | en_US |
dc.subject | House Price Prediction | en_US |
dc.subject | Machine Learning | en_US |
dc.title | Artificial intelligence approach for modeling house price prediction | en_US |
dc.type | Conference Object | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- Artificial_Intelligence_Approach_for_Modeling_House_Price_Prediction.pdf
- Boyut:
- 4.33 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: