Artificial intelligence approach for modeling house price prediction

dc.authoridAlaa Ali Hameed / 0000-0002-8514-9255en_US
dc.authorscopusidAlaa Ali Hameed / 56338374100en_US
dc.authorwosidAlaa Ali Hameed / ABI-8417-2020
dc.contributor.authorÇekiç, Melihşah
dc.contributor.authorKorkmaz, Kübra Nur
dc.contributor.authorMukus, Habib
dc.contributor.authorHameed, Alaa Ali
dc.contributor.authorJamil, Akhtar
dc.contributor.authorSoleimani, Faezeh
dc.date.accessioned2022-11-07T07:26:28Z
dc.date.available2022-11-07T07:26:28Z
dc.date.issued2022en_US
dc.departmentİstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractIndexed keywords SciVal Topics Abstract Real estate has a vast market volume across the globe. This domain has been growing significantly in the past few decades. An accurate prediction can help buyers, and other decision-makers make better decisions. However, developing a model that can effectively predict house prices in complex environments is still a challenging task. This paper proposes machine learning models for the accurate prediction of real estate house prices. Furthermore, we investigated the feature importance and various data analysis methods to improve the prediction accuracy. Linear Regression, Decision Tree, XGBoost, Extra Trees, and Random Forest were used in this study. For all models, hyperparameters were first calculated using k-fold cross-validation, and then they were trained to apply to test data. The models were tested on the Boston housing dataset. The proposed method was evaluated using Root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) metrics.en_US
dc.identifier.citationCekic, M., Korkmaz, K. N., Mukus, H., Hameed, A. A., Jamil, A., & Soleimani, F. (2022). Artificial intelligence approach for modeling house price prediction. Paper presented at the 2022 2nd International Conference on Computing and Machine Intelligence, ICMI 2022 - Proceedings, doi:10.1109/ICMI55296.2022.9873784en_US
dc.identifier.doi10.1109/ICMI55296.2022.9873784en_US
dc.identifier.scopus2-s2.0-85139083101en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/ICMI55296.2022.9873784
dc.identifier.urihttps://hdl.handle.net/20.500.12713/3243
dc.indekslendigikaynakScopusen_US
dc.institutionauthorHameed, Alaa Ali
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2022 2nd International Conference on Computing and Machine Intelligence, ICMI 2022 - Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional Neural (CNN)en_US
dc.subjectConvolutional Neural Network Real Estate Price Predictionen_US
dc.subjectHouse Price Predictionen_US
dc.subjectMachine Learningen_US
dc.titleArtificial intelligence approach for modeling house price predictionen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
Artificial_Intelligence_Approach_for_Modeling_House_Price_Prediction.pdf
Boyut:
4.33 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: