Abalone age prediction using machine learning
dc.authorid | Alaa Ali Hameed / 0000-0002-8514-9255 | en_US |
dc.authorscopusid | Alaa Ali Hameed / 56338374100 | en_US |
dc.authorwosid | Alaa Ali Hameed / ABI-8417-2020 | |
dc.contributor.author | Guney, Seda | |
dc.contributor.author | Kilinc, Irem | |
dc.contributor.author | Hameed, Alaa Ali | |
dc.contributor.author | Jamil, Akhtar | |
dc.date.accessioned | 2022-06-11T07:48:33Z | |
dc.date.available | 2022-06-11T07:48:33Z | |
dc.date.issued | 2022 | en_US |
dc.department | İstinye Üniversitesi | en_US |
dc.description.abstract | Abalone is a marine snail found in the cold coastal regions. Age is a vital characteristic that is used to determine its worth. Currently, the only viable solution to determine the age of abalone is through very detailed steps in a laboratory. This paper exploits various machine learning models for determining its age. A comprehensive analysis of various machine learning algorithms for abalone age prediction is performed which include, backpropagation feed-forward neural network (BPFFNN), K-Nearest Neighbors (KNN), Naive Bayes, Decision Tree, Random Forest, Gauss Naive Bayes, and Support Vector Machine (SVM). In addition, five different optimizers were also tested with BPFFNN to evaluate their effect on its performance. Comprehensive experiments were performed using our data set. © 2022, Springer Nature Switzerland AG. | en_US |
dc.identifier.citation | Guney, S., Kilinc, I., Hameed, A. A., & Jamil, A. (2022). Abalone age prediction using machine learning doi:10.1007/978-3-031-04112-9_25 Retrieved from www.scopus.com | en_US |
dc.identifier.doi | 10.1007/978-3-031-04112-9_25 | en_US |
dc.identifier.endpage | 338 | en_US |
dc.identifier.issn | 1865-0929 | en_US |
dc.identifier.scopus | 2-s2.0-85128987536 | en_US |
dc.identifier.scopusquality | Q4 | en_US |
dc.identifier.startpage | 329 | en_US |
dc.identifier.uri | https://doi.org/10.1007/978-3-031-04112-9_25 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/2871 | |
dc.identifier.volume | 1543 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Hameed, Alaa Ali | |
dc.language.iso | en | en_US |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.relation.ispartof | Communications in Computer and Information Science | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Abalone | en_US |
dc.subject | Back Propagation Neural Networks | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Neural Networks | en_US |
dc.title | Abalone age prediction using machine learning | en_US |
dc.type | Conference Object | en_US |
Dosyalar
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: