Metaheuristic algorithms in IoT: optimized edge node localization

dc.authoridFarzad Kiani / 0000-0002-0354-9344en_US
dc.authoridAmir Seyyedabbasi / 0000-0001-5186-4499en_US
dc.authorscopusidFarzad Kiani / 36662461100en_US
dc.authorscopusidAmir Seyyedabbasi / 57202833910en_US
dc.authorwosidFarzad Kiani / GLS-5020-2022en_US
dc.authorwosidAmir Seyyedabbasi / HJH-7387-2023en_US
dc.contributor.authorKiani, Farzad
dc.contributor.authorSeyyedabbasi, Amir
dc.date.accessioned2022-12-20T12:16:59Z
dc.date.available2022-12-20T12:16:59Z
dc.date.issued2022en_US
dc.departmentİstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.description.abstractIn this study, a new hybrid method is proposed by using the advantages of Grey Wolf Optimizer (GWO) and Moth-Flame Optimization (MFO) algorithms. The proposed hybrid metaheuristic algorithm tries to find the near-optimal solution with high efficiency by using the advantage of both algorithms. At the same time, the shortcomings of each will be eliminated. The proposed algorithm is used to solve the edge computing node localization problem, which is one of the important problems on the Internet of Things (IoT) systems, with the least error rate. This algorithm has shown a successful performance in solving this problem with a smooth and efficient position update mechanism. It was also applied to 30 famous benchmark functions (CEC2015 and CEC2019) to prove the accuracy and general use of the proposed method. It has been proven from the results that it is the best algorithm with a success rate of 54% and 57%, respectively. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.identifier.citationKiani, F., & Seyyedabbasi, A. (2023). Metaheuristic Algorithms in IoT: Optimized Edge Node Localization. In Engineering Applications of Modern Metaheuristics (pp. 19-39). Springer, Cham.en_US
dc.identifier.doi10.1007/978-3-031-16832-1_2en_US
dc.identifier.issn1860949Xen_US
dc.identifier.scopus2-s2.0-85143823450en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-031-16832-1_2
dc.identifier.urihttps://hdl.handle.net/20.500.12713/3744
dc.indekslendigikaynakScopusen_US
dc.institutionauthorKiani, Farzad
dc.institutionauthorSeyyedabbasi, Amir
dc.language.isoenen_US
dc.publisherspringer linken_US
dc.relation.ispartofSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEdge Computing Nodesen_US
dc.subjectLocalizationen_US
dc.subjectMetaheuristicen_US
dc.subjectOptimization Problemsen_US
dc.subjectInternet Of Thingsen_US
dc.titleMetaheuristic algorithms in IoT: optimized edge node localizationen_US
dc.typeArticleen_US

Dosyalar

Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: