Yazar "Alawfi, Bader S." seçeneğine göre listele
Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Anti-Acanthamoebic effects of silver-conjugated tetrazole nanoparticle(Academic Press Inc., 2024) Anwar, Areeba; Fatima, Itrat; Khan, Khalid Mohammed; Daalah, Meshal; Alawfi, Bader S.; Khan, Naveed Ahmed; Khan, Naveed AhmedTetrazoles are five-membered ring aromatic heterocyclic molecules that consist of one carbon and four nitrogen atoms. Several tetrazole-based drugs have shown promising activities against bacteria, fungi, asthma, cancer, hypertension etc. The overall aim of this study was to determine anti-Acanthamoebic properties of tetrazoles and tetrazole-conjugated silver nanoparticles. Tetrazole-conjugated silver nanoparticles were synthesized and confirmed using ultraviolet–visible spectrometry, Dynamic light scattering, and Fourier-transform infrared spectroscopy. Using amoebicidal, encystment, and excystment assays, the findings revealed that tetrazoles exhibited antiamoebic properties and these effects were enhanced when conjugated with silver nanoparticles. Importantly, conjugation with silver nanoparticles inhibited parasite-mediated human cell death in vitro, as measured by lactate dehydrogenase release, but it reduced toxic effects of drugs alone on human cells. Overall, these results showed clearly that tetrazoles exhibit potent antiamoebic properties which can be enhanced by conjugation with silver nanoparticles and these potential in the rational development of therapeutic interventions against parasitic infections such as keratitis and granulomatous amoebic encephalitis due to pathogenic Acanthamoeba. © 2024 Elsevier Inc.Öğe The anti-amoebic potential of carboxamide derivatives containing sulfonyl or sulfamoyl moieties against brain-eating Naegleria fowleri(Springer, 2023) Akbar, Noor; Siddiqui, Ruqaiyyah; El-Gamal, Mohammed I.; Zaraei, Seyed-Omar; Alawfi, Bader S.; Khan, Naveed AhmedNaegleria fowleri is a free-living thermophilic flagellate amoeba that causes a rare but life-threatening infection called primary amoebic meningoencephalitis (PAM), with a very high fatality rate. Herein, the anti-amoebic potential of carboxamide derivatives possessing sulfonyl or sulfamoyl moiety was assessed against pathogenic N. fowleri using amoebicidal, cytotoxicity and cytopathogenicity assays. The results from amoebicidal experiments showed that derivatives dramatically reduced N. fowleri viability. Selected derivatives demonstrated IC50 values at lower concentrations; 1j showed IC50 at 24.65 mu M, while 1k inhibited 50% amoebae growth at 23.31 mu M. Compounds with significant amoebicidal effects demonstrated limited cytotoxicity against human cerebral microvascular endothelial cells. Finally, some derivatives mitigated N. fowleri-instigated host cell death. Ultimately, this study demonstrated that 1j and 1k exhibited potent anti-amoebic activity and ought to be looked at in future studies for the development of therapeutic anti-amoebic pharmaceuticals. Further investigation is required to determine the clinical relevance of our findings.Öğe Cell death of Acanthamoeba castellanii following exposure to antimicrobial agents commonly included in contact lens disinfecting solutions(Springer, 2024) Thomas, Louise; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah; Alawfi, Bader S.; Lloyd, DavidSeveral antimicrobial agents are commonly included in contact lens disinfectant solutions including chlorhexidine diacetate (CHX), polyhexamethylene biguanide (PHMB) or myristamidopropyl dimethylamine (MAPD); however, their mode of action, i.e. necrosis versus apoptosis is incompletely understood. Here, we determined whether a mechanism of cell death resembling that of apoptosis was present in Acanthamoeba castellanii of the T4 genotype (NEFF) following exposure to the aforementioned antimicrobials using the anticoagulant annexin V that undergoes rapid high affinity binding to phosphatidylserine in the presence of calcium, making it a sensitive probe for phosphatidylserine exposure. The results revealed that under the conditions employed in this study, an apoptotic pathway of cell death in this organism at the tested conditions does not occur. Our findings suggest that necrosis is the likely mode of action; however, future mechanistic studies should be accomplished in additional experimental conditions to further comprehend the molecular mechanisms of cell death in Acanthamoeba.Öğe Drug modifications: graphene oxide-chitosan loading enhanced anti-amoebic effects of pentamidine and doxycycline(Springer Science and Business Media Deutschland GmbH, 2024) Jabri, Tooba; Daalah, Meshal; Alawfi, Bader S.; Gul, Jasra; Ahmed, Usman; Shah, Muhammad Raza; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah; Ying, Tan Yee; Tong, Yeo Jia; Anwar, AyazAcanthamoeba castellanii is the causative pathogen of a severe eye infection, known as Acanthamoeba keratitis and a life-threatening brain infection, named granulomatous amoebic encephalitis. Current treatments are problematic and costly and exhibit limited efficacy against Acanthamoeba parasite, especially the cyst stage. In parallel to drug discovery and drug repurposing efforts, drug modification is also an important approach to tackle infections, especially against neglected parasites such as free-living amoebae: Acanthamoeba. In this study, we determined whether modifying pentamidine and doxycycline through chitosan-functionalized graphene oxide loading enhances their anti-amoebic effects. Various concentrations of doxycycline, pentamidine, graphene oxide, chitosan-functionalized graphene oxide, and chitosan-functionalized graphene oxide loaded with doxycycline and pentamidine were investigated for amoebicidal effects against pathogenic A. castellanii belonging to the T4 genotype. Lactate dehydrogenase assays were performed to determine toxic effects of these various drugs and nanoconjugates against human cells. The findings revealed that chitosan-functionalized graphene oxide loaded with doxycycline demonstrated potent amoebicidal effects. Nanomaterials significantly (p < 0.05) inhibited excystation and encystation of A. castellanii without exhibiting toxic effects against human cells in a concentration-dependent manner, as compared with other formulations. These results indicate that drug modifications coupled with nanotechnology may be a viable avenue in the rationale development of effective therapies against Acanthamoeba infections. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.Öğe Drug modifications: graphene oxide-chitosan loading enhanced anti-amoebic effects of pentamidine and doxycycline(SPRINGER, 28.11.2024) Jabri, Tooba; Daalah, Meshal; Alawfi, Bader S.; Gul, Jasra; Ahmed, Usman; Shah, Muhammad Raza; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah; Ying, Tan Yee; Tong, Yeo Jia; Anwar, AyazAcanthamoeba castellanii is the causative pathogen of a severe eye infection, known as Acanthamoeba keratitis and a life-threatening brain infection, named granulomatous amoebic encephalitis. Current treatments are problematic and costly and exhibit limited efficacy against Acanthamoeba parasite, especially the cyst stage. In parallel to drug discovery and drug repurposing efforts, drug modification is also an important approach to tackle infections, especially against neglected parasites such as free-living amoebae: Acanthamoeba. In this study, we determined whether modifying pentamidine and doxycycline through chitosan-functionalized graphene oxide loading enhances their anti-amoebic effects. Various concentrations of doxycycline, pentamidine, graphene oxide, chitosan-functionalized graphene oxide, and chitosan-functionalized graphene oxide loaded with doxycycline and pentamidine were investigated for amoebicidal effects against pathogenic A. castellanii belonging to the T4 genotype. Lactate dehydrogenase assays were performed to determine toxic effects of these various drugs and nanoconjugates against human cells. The findings revealed that chitosan-functionalized graphene oxide loaded with doxycycline demonstrated potent amoebicidal effects. Nanomaterials significantly (p < 0.05) inhibited excystation and encystation of A. castellanii without exhibiting toxic effects against human cells in a concentration-dependent manner, as compared with other formulations. These results indicate that drug modifications coupled with nanotechnology may be a viable avenue in the rationale development of effective therapies against Acanthamoeba infections.Öğe Phosphonium chloride-based deep eutectic solvents inhibit pathogenic Acanthamoeba castellanii belonging to the T4 genotype(Springer, 2024) Akbar, Noor; Khan, Amir Sada; Siddiqui, Ruqaiyyah; Ibrahim, Taleb Hassan; Khamis, Mustafa I.; Alawfi, Bader S.; Al-ahmadi, Bassam M.; Khan, Naveed AhmedHerein, we investigated the anti-amoebic activity of phosphonium-chloride-based deep eutectic solvents against pathogenic Acanthamoeba castellanii of the T4 genotype. Deep eutectic solvents are ionic fluids composed of two or three substances, capable of self-association to form a eutectic mixture with a melting point lower than each substance. In this study, three distinct hydrophobic deep eutectic solvents were formulated, employing trihexyltetradecylphosphonium chloride as the hydrogen bond acceptor and aspirin, dodecanoic acid, and 4-tert-butylbenzoic acid as the hydrogen bond donors. Subsequently, all three deep eutectic solvents, denoted as DES1, DES2, DES3 formulations, underwent investigations comprising amoebicidal, adhesion, excystation, cytotoxicity, and cytopathogenicity assays. The findings revealed that DES2 was the most potent anti-amoebic agent, with a 94% elimination rate against the amoebae within 24 h at 30 degrees C. Adhesion assays revealed that deep eutectic solvents hindered amoebae adhesion to human brain endothelial cells, with DES2 exhibiting 88% reduction of adhesion. Notably, DES3 exhibited remarkable anti-excystation properties, preventing 94% of cysts from reverting to trophozoites. In cytopathogenicity experiments, deep eutectic solvent formulations and dodecanoic acid alone reduced amoebae-induced human brain endothelial cell death, with DES2 showing the highest effects. Lactate dehydrogenase assays revealed the minimal cytotoxicity of the tested deep eutectic solvents, with the exception of trihexyltetradecylphosphonium chloride, which exhibited 35% endothelial cell damage. These findings underscore the potential of specific deep eutectic solvents in combating pathogenic Acanthamoeba, presenting promising avenues for further research and development against free-living amoebae.