A novel stability study on volterra integral equations with delay (VIE-D) using the fuzzy minimum optimal controller in matrix-valued fuzzy Banach spaces

dc.authoridAllahviranloo, Tofigh/0000-0002-6673-3560
dc.authoridSaadati, Reza/0000-0002-6770-6951
dc.authoridEidinejad, Zahra/0000-0003-2517-3365
dc.authoridLi, Chenkuan/0000-0001-7098-8059
dc.authorwosidAllahviranloo, Tofigh/V-4843-2019
dc.authorwosidSaadati, Reza/C-6330-2018
dc.contributor.authorEidinejad, Zahra
dc.contributor.authorSaadati, Reza
dc.contributor.authorAllahviranloo, Tofigh
dc.contributor.authorLi, Chenkuan
dc.date.accessioned2024-05-19T14:45:50Z
dc.date.available2024-05-19T14:45:50Z
dc.date.issued2023
dc.departmentİstinye Üniversitesien_US
dc.description.abstractOur main goal in this article is to investigate the Hyers-Ulam-Rassias stability (HURS) for a type of integral equation called Volterra integral equation with delay (VIE-D). First, by considering special functions such as the Wright function (WR), Mittag-Leffler function (ML), Gauss hypergeometric function (GH), H-Fox function (H-F), and also by introducing the aggregation function, we select the best control function by performing numerical calculations to investigate the stability of the desired equation. In the following, using the selected optimal function, i.e., the minimum function, we prove the existence of a unique solution and the HURS of the VI-D equation in the matrix-valued fuzzy space (MVFS) with two different intervals. At the end of each section, we provide a numerical example of the obtained results.en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada [2019-03907]en_US
dc.description.sponsorshipAcknowledgementsChenkuan Li is supported by the Natural Sciences and Engineering Research Council of Canada (Grant No. 2019-03907).en_US
dc.identifier.doi10.1007/s40314-023-02362-2
dc.identifier.issn2238-3603
dc.identifier.issn1807-0302
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85162182369en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org10.1007/s40314-023-02362-2
dc.identifier.urihttps://hdl.handle.net/20.500.12713/5363
dc.identifier.volume42en_US
dc.identifier.wosWOS:001012593100002en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofComputational & Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz20240519_kaen_US
dc.subjectMittag-Leffler Functionen_US
dc.subjectGauss Hypergeometric Functionen_US
dc.subjectWright Functionen_US
dc.subjectH-Fox Functionen_US
dc.subjectHu Stabilityen_US
dc.subjectHur Stabilityen_US
dc.subjectAggregation Function (Af)en_US
dc.subjectOptimalen_US
dc.subjectControl Functionen_US
dc.subjectMinimum Functionen_US
dc.subjectVolterra Integral Equation With Delay (Vie-D)en_US
dc.subjectMvfb-Spacesen_US
dc.titleA novel stability study on volterra integral equations with delay (VIE-D) using the fuzzy minimum optimal controller in matrix-valued fuzzy Banach spacesen_US
dc.typeArticleen_US

Dosyalar