Selection-based per-instance heuristic generation for protein structure prediction of 2D HP model

dc.authoridMustafa Mısır / 0000-0002-6885-6775en_US
dc.authorscopusidMustafa Mısır / 36458858100en_US
dc.authorwosidMustafa Mısır / A-6739-2010en_US
dc.contributor.authorMısır, Mustafa
dc.date.accessioned2022-03-16T05:32:42Z
dc.date.available2022-03-16T05:32:42Z
dc.date.issued2021en_US
dc.departmentİstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractThe present study aims at generating heuristics for Protein Structure Prediction represented in the 2D HP model. Protein Structure Prediction is about determining the 3-dimensional form of a protein from a given amino acid sequence. The resulting structure directly relates to the functionalities of the protein. There are a wide range of algorithms to address Protein Structure Prediction as an optimization problem. Being said that there is no an ultimate algorithm that can effectively solve PSP under varying experimental settings. Hyper-heuristics can offer a solution as high-level, problem-independent search and optimization strategies. Selection Hyper-heuristics operate on given heuristic sets that directly work on the solution space. One group of Selection Hyper-heuristics focus on automatically specify the best heuristics on-the-fly. Yet, the candidate heuristics tend to be decided, preferably a domain expert. Generation Hyper-heuristics approach differently as aiming to generate such heuristics automatically. This work introduces a automated heuristic generation strategy supporting Selection Hyper-heuristics. The generation task is formulated as a selection problem, disclosing the best expected heuristic specifically f or a given problem instance. The heuristic generation process is established as a parameter configuration problem. T he corresponding system is devised by initially generating a training data alongside with a set of basic features characterizing the Protein Structure Prediction problem instances. The data is generated discretizing the parameter configuration space o f a single heuristic. The resulting data is used to predict the best configuration of a specific heuristic used in a heuristic set under Selection Hyper-heuristics. The prediction is performed separately for each instance rather than using one setting for all the instances. The empirical analysis showed that the proposed idea offers both better and robust performance on 22 PSP instances compared to the one-for-all heuristic sets. Additional analysis linked to the selection method, ALORS, revealed insights on what makes the PSP instances hard / easy while providing dis/-similarity analysis between the candidate configurations. © 2021 IEEE.en_US
dc.identifier.citationMisir, M. (2021). Selection-based per-instance heuristic generation for protein structure prediction of 2D HP model. Paper presented at the 2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings, doi:10.1109/SSCI50451.2021.9660025 Retrieved from www.scopus.comen_US
dc.identifier.doi10.1109/SSCI50451.2021.9660025en_US
dc.identifier.isbn978-172819048-8
dc.identifier.scopus2-s2.0-85125796072en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/SSCI50451.2021.9660025
dc.identifier.urihttps://hdl.handle.net/20.500.12713/2555
dc.identifier.wosWOS:000824464300205en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorMısır, Mustafa
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject2D HP Modelen_US
dc.subjectAlgorithm Selectionen_US
dc.subjectHeuristic Generationen_US
dc.subjectProtein Structure Predictionen_US
dc.subjectSelection Hyper-heuristicsen_US
dc.titleSelection-based per-instance heuristic generation for protein structure prediction of 2D HP modelen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
17.pdf
Boyut:
303.62 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: