Some connections between the generalized Hukuhara derivative and the fuzzy derivative based on strong linear independence
dc.authorid | Allahviranloo, Tofigh/0000-0002-6673-3560 | |
dc.authorwosid | Allahviranloo, Tofigh/V-4843-2019 | |
dc.contributor.author | Esmi, Estevao | |
dc.contributor.author | Silva, Jefferson | |
dc.contributor.author | Allahviranloo, Tofigh | |
dc.contributor.author | Barros, Laecio C. | |
dc.date.accessioned | 2024-05-19T14:41:44Z | |
dc.date.available | 2024-05-19T14:41:44Z | |
dc.date.issued | 2023 | |
dc.department | İstinye Üniversitesi | en_US |
dc.description.abstract | This article investigates some connections between the notions of the generalized Hukuhara derivative and the Psi- derivative of fuzzy number-valued functions. The concept of Psi- differentiability is defined on a fuzzy number-valued function.. in the form of phi(x) =rho(1)(x)A(1)+ ... +rho(n) (x)A(n) where rho(1), ... rho(n) are.. real-valued functions defined on an interval [a,b] and {A(1),..A(n)} is a strongly linearly independent subset of fuzzy numbers. The Psi- derivative of phi at some x is phi'(x) = rho'(1)(x)A(1)+ ... +rho'(n) (x) A(n) whenever the derivatives rho'(1)(x)(,) ... , rho'(n) (x) exist. This article provides conditions for these two notions of derivatives of such functions to coincide. Moreover, under some weak conditions, we show that an arbitrary continuously gH-differentiable function defined on an interval [a,b] and its gH-derivative can be uniformly approximated as closely as desired by a.- differentiable function and its.- derivative, respectively. Finally, we apply these results to obtain numerical and analytical solutions of a simple fuzzy decay model described by a fuzzy initial value problem under gH-derivative. | en_US |
dc.description.sponsorship | CNPq [313313/2020-2, 314885/2021-8] | en_US |
dc.description.sponsorship | 1 Grantee CNPq 313313/2020-2.2 Grantee CNPq 314885/2021-8. | en_US |
dc.identifier.doi | 10.1016/j.ins.2023.119249 | |
dc.identifier.issn | 0020-0255 | |
dc.identifier.issn | 1872-6291 | |
dc.identifier.scopus | 2-s2.0-85160848031 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org10.1016/j.ins.2023.119249 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/5152 | |
dc.identifier.volume | 643 | en_US |
dc.identifier.wos | WOS:001021822000001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Inc | en_US |
dc.relation.ispartof | Information Sciences | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | 20240519_ka | en_US |
dc.subject | Fuzzy Numbers | en_US |
dc.subject | Strong Linear Independence | en_US |
dc.subject | Fuzzy Calculus | en_US |
dc.subject | Banach Space | en_US |
dc.subject | Approximation | en_US |
dc.subject | Generalized Hukuhara Derivative | en_US |
dc.subject | Psi-Derivative | en_US |
dc.title | Some connections between the generalized Hukuhara derivative and the fuzzy derivative based on strong linear independence | en_US |
dc.type | Article | en_US |