Resource allocation in 5G cloud-RAN using deep reinforcement learning algorithms: A review
dc.authorid | sadr, mohammad mohsen/0000-0002-4309-1948 | |
dc.authorid | Sohrabi, Mohammad Karim/0000-0001-8066-0356 | |
dc.authorwosid | sadr, mohammad mohsen/IWL-8189-2023 | |
dc.authorwosid | jamali, shahram/F-4862-2017 | |
dc.authorwosid | Sohrabi, Mohammad Karim/AAD-8618-2019 | |
dc.contributor.author | Khani, Mohsen | |
dc.contributor.author | Jamali, Shahram | |
dc.contributor.author | Sohrabi, Mohammad Karim | |
dc.contributor.author | Sadr, Mohammad Mohsen | |
dc.contributor.author | Ghaffari, Ali | |
dc.date.accessioned | 2024-05-19T14:50:25Z | |
dc.date.available | 2024-05-19T14:50:25Z | |
dc.date.issued | 2024 | |
dc.department | İstinye Üniversitesi | en_US |
dc.description.abstract | This paper reviews recent research on resource allocation in 5G cloud-based radio access networks (C-RAN) using deep reinforcement learning (DRL) algorithms. It explores the potential of DRL for learning complex decision-making policies without human intervention. The paper first introduces the C-RAN architecture and resource allocation concepts, followed by an overview of DRL algorithms applied to C-RAN. It discusses the challenges and potential solutions in applying DRL to C-RAN resource allocation, including scalability, convergence, and fairness. The review concludes by highlighting open research directions for future investigation. By providing insights into the state-of-the-art techniques for resource allocation in 5G C-RAN using DRL, this paper emphasizes their potential impact on advancing 5G network technology. | en_US |
dc.identifier.doi | 10.1002/ett.4929 | |
dc.identifier.issn | 2161-3915 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85180894313 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org10.1002/ett.4929 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/5702 | |
dc.identifier.volume | 35 | en_US |
dc.identifier.wos | WOS:001135111200001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.ispartof | Transactions on Emerging Telecommunications Technologies | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | 20240519_ka | en_US |
dc.subject | Joint Optimization | en_US |
dc.subject | C-Ran | en_US |
dc.subject | Computational Resources | en_US |
dc.subject | Radio | en_US |
dc.subject | Networks | en_US |
dc.subject | Machine | en_US |
dc.subject | Access | en_US |
dc.subject | Noma | en_US |
dc.subject | Framework | en_US |
dc.subject | Security | en_US |
dc.title | Resource allocation in 5G cloud-RAN using deep reinforcement learning algorithms: A review | en_US |
dc.type | Review Article | en_US |