Frequency domain channel-wise attack to CNN classifiers in motor imagery brain-computer interfaces
dc.authorscopusid | Witold Pedrycz / 58861905800 | |
dc.authorwosid | Witold Pedrycz / FPE-7309-2022 | |
dc.contributor.author | Huang, Xiuyu | |
dc.contributor.author | Choi, Kup-Sze | |
dc.contributor.author | Liang, Shuang | |
dc.contributor.author | Zhang, Yuanpeng | |
dc.contributor.author | Zhang, Yingkui | |
dc.contributor.author | Poon, Simon | |
dc.contributor.author | Pedrycz, Witold | |
dc.date.accessioned | 2025-04-18T10:32:54Z | |
dc.date.available | 2025-04-18T10:32:54Z | |
dc.date.issued | 2024 | |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description.abstract | Objective: Convolutional neural network (CNN), a classical structure in deep learning, has been commonly deployed in the motor imagery brain-computer interface (MIBCI). Many methods have been proposed to evaluate the vulnerability of such CNN models, primarily by attacking them using direct temporal perturbations. In this work, we propose a novel attacking approach based on perturbations in the frequency domain instead. Methods: For a given natural MI trial in the frequency domain, the proposed approach, called frequency domain channel-wise attack (FDCA), generates perturbations at each channel one after another to fool the CNN classifiers. The advances of this strategy are two-fold. First, instead of focusing on the temporal domain, perturbations are generated in the frequency domain where discriminative patterns can be extracted for motor imagery (MI) classification tasks. Second, the perturbing optimization is performed based on differential evolution algorithm in a black-box scenario where detailed model knowledge is not required. Results: Experimental results demonstrate the effectiveness of the proposed FDCA which achieves a significantly higher success rate than the baselines and existing methods in attacking three major CNN classifiers on four public MI benchmarks. Conclusion: Perturbations generated in the frequency domain yield highly competitive results in attacking MIBCI deployed by CNN models even in a black-box setting, where the model information is well-protected. Significance: To our best knowledge, existing MIBCI attack approaches are all gradient-based methods and require details about the victim model, e.g., the parameters and objective function. We provide a more flexible strategy that does not require model details but still produces an effective attack outcome. | |
dc.description.sponsorship | Jiangsu University Philosophy and Social Science Foundation | |
dc.identifier.citation | Huang, X., Choi, K. S., Liang, S., Zhang, Y., Zhang, Y., Poon, S., & Pedrycz, W. (2023). Frequency Domain Channel-wise Attack to CNN Classifiers in Motor Imagery Brain-Computer Interfaces. IEEE Transactions on Biomedical Engineering. | |
dc.identifier.doi | 10.1109/TBME.2023.3344295 | |
dc.identifier.endpage | 1598 | |
dc.identifier.issn | 0018-9294 | |
dc.identifier.issn | 1558-2531 | |
dc.identifier.issue | 5 | |
dc.identifier.scopus | 2-s2.0-85181556090 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1587 | |
dc.identifier.uri | http://dx.doi.org/10.1109/TBME.2023.3344295 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/7117 | |
dc.identifier.volume | 71 | |
dc.identifier.wos | WOS:001262891800013 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Pedrycz, Pedrycz, Witold | |
dc.institutionauthorid | Witold Pedrycz / 0000-0002-9335-9930 | |
dc.language.iso | en | |
dc.publisher | IEEE-INST electronics electrical engineers | |
dc.relation.ispartof | IEEE transactions on biomedical engineering | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Adversarial Attack | |
dc.subject | Convolutional Neural Networks | |
dc.subject | Differential Evolution | |
dc.subject | Frequency Domain | |
dc.subject | Motor Imagery | |
dc.title | Frequency domain channel-wise attack to CNN classifiers in motor imagery brain-computer interfaces | |
dc.type | Article |
Dosyalar
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: