Nitrogen plasma synthesis of flexible supercapacitors based on reduced graphene oxide/aloe vera/carbon nanotubes nanocomposite

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Japan Kk

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Flexible supercapacitors (FS) are ideal as power backups for upcoming stretchable electronics due to their high power density and good mechanical compliance. However, lacking technology for FS mass manufacturing is still a significant obstacle.The present study describes a novel method for preparing FS based on reduced graphene oxide (RGO) using the N+ plasma technique, in which N+ reduces graphene oxide on the surface of a cotton/polyester substrate. The effect of aloe vera (AV) as a natural reducing & capping agent and carbon nanotubes (CNT) as nanoconductors on the electrochemical performance of the electrodes is studied. FESEM and XPS were employed to investigate the electrodes' structural and chemical composition of electrodes. The galvanostatic charge-discharge curves of electrodes revealed the enhancement of the electrochemical activity of the as-prepared electrode upon additions of AV and CNT. The areal capacitance of the RGO, RGO/AV, and RGO/AV/CNT supercapacitors at 5 mV/s was 511, 1244.5, and 1879 mF/cm(2), respectively. The RGO electrode showed capacitive retention of 80.9% after 2000 cycles enhanced to 89.7% and 92% for RGO/AV and RGO/AV/CNT electrodes, respectively. The equivalent series resistance of the RGO electrode was 126.28 & omega;, decreased to 56.62 and 40.06 & omega; for RGO/AV and RGO/AV/CNT electrodes, respectively.

Açıklama

Anahtar Kelimeler

Flexible Supercapacitors, Plasma, Graphene, Carbon Nanotubes, Aloe Vera

Kaynak

Carbon Letters

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

33

Sayı

6

Künye