New analysis of fuzzy fractional Langevin differential equations in Caputo's derivative sense

dc.authoridTofigh Allahviranloo / 0000-0002-6673-3560en_US
dc.authorscopusidTofigh Allahviranloo / 8834494700
dc.authorwosidTofigh Allahviranloo / V-4843-2019en_US
dc.contributor.authorAkram, Muhammad
dc.contributor.authorMuhammad, Ghulam
dc.contributor.authorAllahviranloo, Tofigh
dc.contributor.authorAli, Ghada
dc.date.accessioned2022-09-08T09:22:40Z
dc.date.available2022-09-08T09:22:40Z
dc.date.issued2022en_US
dc.departmentİstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe extraction of analytical solution of uncertain fractional Langevin differential equations involving two independent fractional-order is frequently complex and difficult. As a result, developing a proper and comprehensive technique for the solution of this problem is very essential. In this article, we determine the explicit and analytical fuzzy solution for various classes of the fuzzy fractional Langevin differential equations (FFLDEs) with two independent fractional-orders both in homogeneous and non-homogeneous cases. The potential solution of FFLDEs is also extracted using the fuzzy Laplace transformation technique. Furthermore, the solution of FFLDEs is defined in terms of bivariate and trivariate Mittag-Leffler functions both in the general and special forms. FFLDEs are a new topic having many applications in science and engineering then to grasp the novelty of this work, we connect FFLDEs with RLC electrical circuit to visualize and support the theoretical results.en_US
dc.identifier.citationAkram, M., Muhammad, G., Allahviranloo, T., Ali, G. (2022). New analysis of fuzzy fractional Langevin differential equations in Caputo's derivative sense. Aims Mathematics, 7(10), 18467-18496.en_US
dc.identifier.doi10.3934/math.20221016en_US
dc.identifier.endpage18496en_US
dc.identifier.issn2473-6988en_US
dc.identifier.issue10en_US
dc.identifier.scopus2-s2.0-85136220591en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage18467en_US
dc.identifier.urihttps://doi.org/10.3934/math.20221016
dc.identifier.urihttps://hdl.handle.net/20.500.12713/3132
dc.identifier.volume7en_US
dc.identifier.wosWOS:000843441600001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorAllahviranloo, Tofigh
dc.language.isoenen_US
dc.publisherAMER INST MATHEMATICAL SCIENCES-AIMSen_US
dc.relation.ispartofAIMS MATHEMATICSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFuzzy Fractional Langevin Differential Equationsen_US
dc.subjectCaputo-Type Fractional Derivativeen_US
dc.subjectFuzzy Laplace Transformationen_US
dc.subjectBivariate and Trivariate Mittag-Leffler Functionen_US
dc.subjectRLC Electrical Circuiten_US
dc.titleNew analysis of fuzzy fractional Langevin differential equations in Caputo's derivative senseen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ä°sim:
10.3934_math.20221016.pdf
Boyut:
1.47 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
Ä°sim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: