A comprehensive assessment of energy storage options for green hydrogen

dc.authoridKarayel, Görkem Kubilay/0000-0002-1980-2228
dc.authorwosidKarayel, Görkem Kubilay/GNP-2246-2022
dc.contributor.authorKarayel, G. Kubilay
dc.contributor.authorJavani, Nader
dc.contributor.authorDincer, Ibrahim
dc.date.accessioned2024-05-19T14:42:33Z
dc.date.available2024-05-19T14:42:33Z
dc.date.issued2023
dc.departmentİstinye Üniversitesien_US
dc.description.abstractThe current study investigates suitable hydrogen storage technologies for hydrogen produced by renewable energy resources in a green manner. Type-I, III, and IV high-pressure tanks, adsorbent storage, metal hydride storage and chemical storage options are investigated and compared based on their hydrogen storage capacities, costs, masses and greenhouse gas (GHG) emissions. The results of this study show that in a Type-IV hydrogen storage tank (i.e., composite material tank of carbon fiber with thermoplastic polymer liners), increasing the tank pressure from 100 bar to 800 bar increases the hydrogen holding capacity by 457.7%. Regarding the environmental impact, the lowest GHG emissions appear to be the lowest for liquid hydrogen storage with an average of 3.5 CO2eq/kg-H2 while the respective emissions become the highest in metal hydride storage tanks as 113.6 CO2eq/kg-H2. Furthermore, hydrogen storage capacity for Type-IV tanks varies from 1.94 kg at 100 bar to 15.69 kg at 1500 bar in a 250 L tank. In chemical hydride storage tanks, the stored H2 mass will be 40.75 kg for 100 L, 128.39 kg for 200 L, 216.03 kg for 300 L, 303.67 kg for 400 L, 391.31 kg for 500 L and 478.96 kg for 600 L, respectively. Moreover, hydrogen storage, distribution and dispensing are considered critically important in hydrogen logistics and the results of this study will help better guide policymakers to establish effective policies and increase renewable energy penetration in the energy market.en_US
dc.identifier.doi10.1016/j.enconman.2023.117311
dc.identifier.issn0196-8904
dc.identifier.issn1879-2227
dc.identifier.scopus2-s2.0-85163547830en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org10.1016/j.enconman.2023.117311
dc.identifier.urihttps://hdl.handle.net/20.500.12713/5255
dc.identifier.volume291en_US
dc.identifier.wosWOS:001039941300001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofEnergy Conversion and Managementen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz20240519_kaen_US
dc.subjectHydrogen Storageen_US
dc.subjectMetal Hydride Storageen_US
dc.subjectLiquid Hydrogen Storageen_US
dc.subjectCost Assessmenten_US
dc.subjectGhg Emissionsen_US
dc.subjectCompressed Storageen_US
dc.subjectGreen Hydrogenen_US
dc.titleA comprehensive assessment of energy storage options for green hydrogenen_US
dc.typeArticleen_US

Dosyalar