Mathematical optimizations for deep learning
dc.authorid | Çetin Kaya Koç / 0000-0002-2572-9565 | en_US |
dc.authorscopusid | Çetin Kaya Koç / 57053693300 | |
dc.authorwosid | Çetin Kaya Koç / GBX-7437-2022 | |
dc.authorwosid | Çetin Kaya Koç / W-3929-2018 wos | |
dc.contributor.author | Green, Sam | |
dc.contributor.author | Vineyard, Craig M. | |
dc.contributor.author | Koç, Çetin Kaya | |
dc.date.accessioned | 2020-08-30T20:01:38Z | |
dc.date.available | 2020-08-30T20:01:38Z | |
dc.date.issued | 2018 | |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description | Koç, Çetin Kaya (isu author) | |
dc.description.abstract | Deep neural networks are often computationally expensive, during both the training stage and inference stage. Training is always expensive, because back-propagation requires high-precision floating-pointmultiplication and addition. However, various mathematical optimizations may be employed to reduce the computational cost of inference. Optimized inference is important for reducing power consumption and latency and for increasing throughput. This chapter introduces the central approaches for optimizing deep neural network inference: pruning "unnecessary" weights, quantizing weights and inputs, sharing weights between layer units, compressing weights before transferring from main memory, distilling large high-performance models into smaller models, and decomposing convolutional filters to reduce multiply and accumulate operations. In this chapter, using a unified notation, we provide a mathematical and algorithmic description of the aforementioned deep neural network inference optimization methods. © Springer Nature Switzerland AG 2018. | en_US |
dc.identifier.citation | Green S., Vineyard C.M., Koç Ç.K. (2018) Mathematical Optimizations for Deep Learning. In: Koç Ç.K. (eds) Cyber-Physical Systems Security. Springer, Cham. https://doi.org/10.1007/978-3-319-98935-8_4 | en_US |
dc.identifier.citation | Green, S., Vineyard, C. M., & Koç, Ç. K. (2018). Mathematical Optimizations for Deep Learning. In Cyber-Physical Systems Security (pp. 69-92). Springer, Cham. | en_US |
dc.identifier.doi | 10.1007/978-3-319-98935-8_4 | en_US |
dc.identifier.endpage | 92 | en_US |
dc.identifier.isbn | 9783319989358; 9783319989341 | |
dc.identifier.scopus | 2-s2.0-85063927536 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 69 | en_US |
dc.identifier.uri | https://doi.org/10.1007/978-3-319-98935-8_4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/330 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Koç, Çetin Kaya | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer International Publishing | en_US |
dc.relation.ispartof | Cyber-Physical Systems Security | en_US |
dc.relation.publicationcategory | Kitap Bölümü - Uluslararası | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.title | Mathematical optimizations for deep learning | en_US |
dc.type | Book Chapter | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 10.1007_978-3-319-98935-8.pdf
- Boyut:
- 986.46 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text