Sentiment classification performance analysis based on glove word embedding
dc.authorid | Yasin Kırelli / 0000-0002-3605-8621 | en_US |
dc.authorid | Şebnem Özdemir / 0000-0001-6668-6285 | en_US |
dc.authorscopusid | Yasin Kırelli / 57219179532 | |
dc.authorscopusid | Şebnem Özdemir / 57205204578 | |
dc.authorwosid | Yasin Kırelli / HHC-1961-2022 | |
dc.authorwosid | Şebnem Özdemir / AAP-7345-2020 | |
dc.contributor.author | Kırelli, Yasin | |
dc.contributor.author | Özdemir, Şebnem | |
dc.date.accessioned | 2021-07-05T13:28:15Z | |
dc.date.available | 2021-07-05T13:28:15Z | |
dc.date.issued | 2021 | en_US |
dc.department | İstinye Üniversitesi, İktisadi, İdari ve Sosyal Bilimler Fakültesi, Yönetim Bilişim Sistemleri Bölümü | en_US |
dc.description.abstract | Representation of words in mathematical expressions is an essential issue in natural language processing. In this study, data sets in different categories are classified as positive or negative according to their content. Using the Glove (Global Vector for Word Representation) method, which is one of the word embedding methods, the effect of the vector set based on the word similarities previously calculated on the classification performance has been analyzed. In this study, the effect of pre-trained, embedded and deterministic word embedding classification performance has analyzed by using Long Short-Term Memory (LSTM). The proposed LSTM based deep learning model has been tested on three different data sets and the results have been evaluated | en_US |
dc.identifier.citation | Kırelli, Y , Özdemir, Ş . (2021). Sentiment Classification Performance Analysis Based on Glove Word Embedding . Sakarya University Journal of Science , 25 (3) , 639-646 . DOI: 10.16984/saufenbilder.886583 | en_US |
dc.identifier.doi | 10.16984/saufenbilder.886583 | en_US |
dc.identifier.endpage | 646 | en_US |
dc.identifier.issn | 2147-835X | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 639 | en_US |
dc.identifier.trdizinid | 469602 | en_US |
dc.identifier.uri | https://doi.org/10.16984/saufenbilder.886583 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/1880 | |
dc.identifier.volume | 25 | en_US |
dc.indekslendigikaynak | TR-Dizin | en_US |
dc.institutionauthor | Kırelli, Yasin | |
dc.institutionauthor | Özdemir, Şebnem | |
dc.language.iso | en | en_US |
dc.publisher | DergiPark | en_US |
dc.relation.ispartof | Sakarya University Journal of Science | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Sentiment Classification | en_US |
dc.subject | Word Embedding | en_US |
dc.subject | Word Weight | en_US |
dc.subject | Glove Word Embedding | en_US |
dc.title | Sentiment classification performance analysis based on glove word embedding | en_US |
dc.type | Article | en_US |