Functionalization of metal-organic frameworks with metallic nanoclusters for ultra-sensitive monitoring of morphine in biological fluids

dc.authoridSaeidi, Mohsen/0000-0001-5430-3339
dc.authoridChenani, Hossein/0009-0009-6924-6491
dc.authorwosidSaeidi, Mohsen/A-1263-2016
dc.authorwosidSaeidi, Mohsen/JZD-9896-2024
dc.contributor.authorSaeidi, Mohsen
dc.contributor.authorChenani, Hossein
dc.contributor.authorAmidian, Mohammadali
dc.contributor.authorRajabi, Nooshin
dc.contributor.authorAlimohammadi, Homayoon
dc.contributor.authorZarrabi, Ali
dc.contributor.authorSimchi, Abdolreza
dc.date.accessioned2024-05-19T14:45:49Z
dc.date.available2024-05-19T14:45:49Z
dc.date.issued2023
dc.departmentİstinye Üniversitesien_US
dc.description.abstractA reliable, fast, and cost-effective method of monitoring morphine (MO) concentration in biological fluids is highly desired in clinical and modern medicine. Nanotechnology has opened up new possibilities for developing morphine biosensors, but the most advanced electrodes available offer a detection limit (LOD) of >= 10 nM. This work introduces a new, ultrasensitive electrochemical biosensor based on microporous metal-organic frameworks (-1100 cm2 g-1 surface area) modified by Ag clusters (-2 nm) and functionalized by Au nanoparticles (-180 nm). Electrochemical studies show that functionalizing the microporous crystalline particles (620 +/- 45 nm) with metal nanoclusters enhances charge transfer kinetics and electrochemical surface area by about 50 and 10 folds, respectively, resulting in high sensitivity (0.127 mu A mu M-1), broad linear dynamic range (0.05-600 mu M), and low LOD (3 +/- 0.2 nM). The differential pulse voltammetry confirms the stability (over 6 weeks), repeatability (RSD=3.0%), and reproducibility (RSD=4.0%) of the hybrid biosensor. The decent selectivity and specificity (RSD=7.4%) of the biosensor against various analogs co-existing with MO in urine have also been determined. Therefore, the hybrid metal-inorganic biosensor presents a promising prospect for simple, lowcost, and precise monitoring of biomolecules, including morphine, in biological fluids and clinical medicine.en_US
dc.description.sponsorshipSharif University of Technology [QA970816]; Iran National Science Foundation [95-S-48740]en_US
dc.description.sponsorshipAS gratefully acknowledge the financial support of the Sharif University of Technology (Grant. No. QA970816) and Iran National Science Foundation (Grant No. 95-S-48740) .en_US
dc.identifier.doi10.1016/j.snb.2023.134175
dc.identifier.issn0925-4005
dc.identifier.urihttps://doi.org10.1016/j.snb.2023.134175
dc.identifier.urihttps://hdl.handle.net/20.500.12713/5357
dc.identifier.volume393en_US
dc.identifier.wosWOS:001094995700001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherElsevier Science Saen_US
dc.relation.ispartofSensors and Actuators B-Chemicalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz20240519_kaen_US
dc.subjectMicroporous Electroactive Materialsen_US
dc.subjectHybrid Metal-Organic Compositesen_US
dc.subjectBimetallic Noble Metal Clustersen_US
dc.subjectElectrochemical Biosensoren_US
dc.titleFunctionalization of metal-organic frameworks with metallic nanoclusters for ultra-sensitive monitoring of morphine in biological fluidsen_US
dc.typeArticleen_US

Dosyalar