Automated breast cancer detection in mammography using ensemble classifier and feature weighting algorithms

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Breast cancer exhibits one of the highest incidence and mortality rates among all cancers affecting women. The early detection of breast cancer reduces mortality and is crucial for prolonging life expectancy. Although mammography is the most often used screening technique in clinical practice, previous studies reviewing mammograms diagnosed by radiologists have commonly revealed false negatives and false positives. Ongoing advances in machine learning techniques have triggered new motivation for the development of computer-aided diagnosis (CAD) systems, which could be applied to assist radiologists in improving final diagnostic accuracy. In this study, an automated methodology for detecting breast cancer in mammography images is proposed based on an ensemble classifier and feature weighting algorithms. First, a novel region extraction approach is proposed to constrain the search area for suspicious breast lesions and an original pectoral removal method is proposed to avoid interference when identifying a region of interest (ROI). In addition, an effective segmentation strategy is developed to automatically identify ROIs whose textural and morphological features are then fused and weighted to generate new feature vectors using a feature weighting algorithm. Finally, an ensemble classifier model is designed using k-nearest neighbor (KNN), bagging, and eigenvalue classification (EigenClass) to determine whether a mammogram contains normal, benign, or malignant tumors based on a majority voting rule. A series of experiments was conducted using the Digital Database for Screening Mammography (DDSM) and Mammographic Image Analysis Society (MIAS) datasets, the results of which demonstrated the proposed scheme outperformed comparable algorithms.

Açıklama

Anahtar Kelimeler

Computer-Aided Diagnosis, Breast Cancer Detection, Mammography, Ensemble Classifier, Feature Weighting

Kaynak

Expert Systems With Applications

WoS Q Değeri

N/A

Scopus Q Değeri

Q1

Cilt

227

Sayı

Künye