Deep learning prediction for gamma-ray attenuation behavior of the KNN-LMN based lead-free ceramics
dc.authorid | Yasin Kırelli / 0000-0002-3605-8621 | en_US |
dc.authorscopusid | Yasin Kırelli / 57219179532 | en_US |
dc.authorwosid | Yasin Kırelli / HHC-1961-2022 | |
dc.contributor.author | Malidarre, Roya Boodaghi | |
dc.contributor.author | Arslankaya, Seher | |
dc.contributor.author | Nar, Melek | |
dc.contributor.author | Kırelli, Yasin | |
dc.contributor.author | Karpuz, Nurdan | |
dc.contributor.author | Özhan Doğan, Serap | |
dc.contributor.author | Malidarreh, Parisa Boodaghi | |
dc.date.accessioned | 2022-06-07T08:13:27Z | |
dc.date.available | 2022-06-07T08:13:27Z | |
dc.date.issued | 2022 | en_US |
dc.department | İstinye Üniversitesi, İktisadi, İdari ve Sosyal Bilimler Fakültesi, Yönetim Bilişim Sistemleri Bölümü | en_US |
dc.description.abstract | The significance and novelty of the present work is the preparation of the non-lead ceramic by the general formula of (1-x) K0.5Na0.5NbO3-xLaMn0.5Ni0.5O3 with different x (0<x<20) (mol%) to examine the shielding qualities of KNN-LMN ceramic. This is done using PhyX/PSD calculation and predicts the attenuation behavior of the samples utilizing the Deep Learning (DL) algorithm. From the attained results it is seen that the higher the x (concentration of the LMN in KNN-LMN lead-free ceramics) the better shielding proficiency is observed in terms of gamma shielding performances for chosen KNN-LMN based lead-free ceramics. In all sections, a good agreement is observed between PhyX/PSD results and DL predictions. © 2022 ICE Publishing: All rights reserved. | en_US |
dc.identifier.citation | Malidarre, R. B., Arslankaya, S., Nar, M., Kirelli, Y., Erdamar, I. Y. D., Karpuz, N., . . . Malidarreh, P. B. (2022). Deep learning prediction for gamma-ray attenuation behavior of the KNN-LMN based lead-free ceramics. Emerging Materials Research, doi:10.1680/jemmr.22.00012 | en_US |
dc.identifier.doi | 10.1680/jemmr.22.00012 | en_US |
dc.identifier.issn | 2046-0147 | en_US |
dc.identifier.scopus | 2-s2.0-85129752416 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.uri | https://doi.org/10.1680/jemmr.22.00012 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/2821 | |
dc.identifier.wos | WOS:000981650500008 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Kırelli, Yasin | |
dc.language.iso | en | en_US |
dc.publisher | ICE Publishing | en_US |
dc.relation.ispartof | Emerging Materials Research | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Deep learning prediction for gamma-ray attenuation behavior of the KNN-LMN based lead-free ceramics | en_US |
dc.type | Article | en_US |
Dosyalar
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: