A tree augmented naive bayes-based methodology for classifying cryptocurrency trends
dc.authorid | Dursun Delen / 0000-0001-8857-5148 | en_US |
dc.authorscopusid | Dursun Delen / 55887961100 | |
dc.authorwosid | Dursun Delen / AGA-9892-2022 | en_US |
dc.contributor.author | Dağ, Ali | |
dc.contributor.author | Dağ, Aslı Z. | |
dc.contributor.author | Asilkalkan, Abdullah | |
dc.contributor.author | Şimşek, Serhat | |
dc.contributor.author | Delen, Dursun | |
dc.date.accessioned | 2023-01-26T12:34:05Z | |
dc.date.available | 2023-01-26T12:34:05Z | |
dc.date.issued | 2023 | en_US |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.description.abstract | As the popularity of blockchain technology and investor confidence in Bitcoin (BTC) increased in recent years, many individuals started making BTC and other cryptocurrency investments, in expectation of high returns. However, as recent market movements have shown, the lack of regulation and oversight makes it difficult to guard against high volatility and potentially significant losses in this sector. In this study, we propose a datadriven Tree Augmented Naive (TAN) Bayes methodology that can be used for identifying the most important factors (as well as their conditional, interdependent relationships) influencing BTC price movements. As the model is parsimonious without sacrificing accuracy, sensitivity, and specificity-as evident from the average accuracy value-the proposed methodology can be used in practice for making short-term investment decisions. | en_US |
dc.identifier.citation | Dag, A., Dag, A. Z., Asilkalkan, A., Simsek, S., & Delen, D. (2023). A Tree Augmented Naïve Bayes-based methodology for classifying cryptocurrency trends. Journal of Business Research, 156, 113522. | en_US |
dc.identifier.doi | 10.1016/j.jbusres.2022.113522 | en_US |
dc.identifier.issn | 0148-2963 | en_US |
dc.identifier.scopus | 2-s2.0-85144076470 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jbusres.2022.113522 | |
dc.identifier.uri | 1873-7978 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/3843 | |
dc.identifier.volume | 156 | en_US |
dc.identifier.wos | WOS:000898769800007 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Delen, Dursun | |
dc.language.iso | en | en_US |
dc.publisher | ELSEVIER | en_US |
dc.relation.ispartof | JOURNAL OF BUSINESS RESEARCH | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Price Prediction | en_US |
dc.subject | Bitcoin | en_US |
dc.subject | Cryptocurrency | en_US |
dc.subject | Business Analytics | en_US |
dc.subject | Tree Augmented Na?ve Bayes | en_US |
dc.title | A tree augmented naive bayes-based methodology for classifying cryptocurrency trends | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 1-s2.0-S1094553922000633-main.pdf
- Boyut:
- 3.23 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: