Linguistic Models: Optimization With the Use of Conditional Fuzzy C-Means

Küçük Resim Yok



Dergi Başlığı

Dergi ISSN

Cilt Başlığı


Ieee-Inst Electrical Electronics Engineers Inc

Erişim Hakkı



Most fuzzy models are just numeric. In this study, we revisit, explore and augment a concept of linguistic models, viz., fuzzy models producing results that are information granules, and, specifically, intervals or fuzzy sets. The proposed architecture is formed by constructing a network of linked fuzzy sets (information granules) ininput and output spaces with the aid of a context-based Fuzzy C-Means clustering method. The user centricity of such clustering method is implied by the explicit formulation of fuzzy sets in the output space. The resulting information granules constructed in the input space are conditioned by the corresponding fuzzy sets in the output space. This arrangement can increase the interpretability of the model and represent the model as a collection of logically arranged associations among information granules. The model's overall design process is discussed along with a detailed algorithmic structure. Its experimental evaluations are provided by using both synthetic and publicly datasets. For the former, the model brings the performance improvement ranging from 91% to 250% over the models with information granules uniformly distributed in output space. For the latter, such improvement ranges from 6% to 94%. Finally, a thorough discussion is provided together with guidelines on how to develop such a linguistic model in different contexts.


Anahtar Kelimeler

Computational Modeling, Linguistics, Fuzzy Sets, Modeling, Context Modeling, Data Models, Computer Architecture, Linguistic Model, Rule-Based Architecture, Conditional Fuzzy C-Means, Interpretability, Coverage And Specificity


Ieee Transactions on Emerging Topics In Computational Intelligence

WoS Q Değeri


Scopus Q Değeri