An application of artificial neural networks for solving fractional higher-order linear integro-differential equations
dc.authorid | Noeiaghdam, Samad/0000-0002-2307-0891 | |
dc.authorid | Allahviranloo, Tofigh/0000-0002-6673-3560 | |
dc.authorid | Kiani, Farzad/0000-0002-0354-9344 | |
dc.authorwosid | Noeiaghdam, Samad/N-8476-2016 | |
dc.authorwosid | Allahviranloo, Tofigh/V-4843-2019 | |
dc.authorwosid | Kiani, Farzad/O-3363-2013 | |
dc.contributor.author | Allahviranloo, T. | |
dc.contributor.author | Jafarian, A. | |
dc.contributor.author | Saneifard, R. | |
dc.contributor.author | Ghalami, N. | |
dc.contributor.author | Nia, S. Measoomy | |
dc.contributor.author | Kiani, F. | |
dc.contributor.author | Fernandez-Gamiz, U. | |
dc.date.accessioned | 2024-05-19T14:42:26Z | |
dc.date.available | 2024-05-19T14:42:26Z | |
dc.date.issued | 2023 | |
dc.department | İstinye Üniversitesi | en_US |
dc.description.abstract | This ongoing work is vehemently dedicated to the investigation of a class of ordinary linear Volterra type integro-differential equations with fractional order in numerical mode. By replacing the unknown function by an appropriate multilayered feed-forward type neural structure, the fractional problem of such initial value is changed into a course of non-linear minimization equations, to some extent. Put differently, interest was sparked in structuring an optimized iterative first-order algorithm to estimate solutions for the origin fractional problem. On top of that, some computer simulation models exemplify the preciseness and well-functioning of the indicated iterative technique. The outstanding accomplished numerical outcomes conveniently reflect the productivity and competency of artificial neural network methods compared to customary approaches. | en_US |
dc.identifier.doi | 10.1186/s13661-023-01762-x | |
dc.identifier.issn | 1687-2770 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85165256257 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.uri | https://doi.org10.1186/s13661-023-01762-x | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/5241 | |
dc.identifier.volume | 2023 | en_US |
dc.identifier.wos | WOS:001029330500001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Boundary Value Problems | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.snmz | 20240519_ka | en_US |
dc.subject | Higher-Order Linear Integro-Differential Equation | en_US |
dc.subject | Artificial Neural Network Approach | en_US |
dc.subject | Caputo Fractional Derivative | en_US |
dc.subject | Learning Algorithm | en_US |
dc.subject | Cost Function | en_US |
dc.title | An application of artificial neural networks for solving fractional higher-order linear integro-differential equations | en_US |
dc.type | Article | en_US |