Managing the Energy flow of a Self-Sustaining Multisource System through intelligent Management Techniques utilizing Artificial Intelligence
dc.authorscopusid | İlhami Çolak / 6602990030 | |
dc.authorwosid | İlhami Çolak / ABI-4240-2020 | |
dc.contributor.author | Serir, Chafiaa | |
dc.contributor.author | Rekioua, Djamila | |
dc.contributor.author | Bensmail, Samia | |
dc.contributor.author | Belkaid, Abdelhakim | |
dc.contributor.author | Çolak, İlhami | |
dc.contributor.author | Belhoul, Talit | |
dc.contributor.author | Mokrani, Zahra | |
dc.date.accessioned | 2025-04-18T10:52:53Z | |
dc.date.available | 2025-04-18T10:52:53Z | |
dc.date.issued | 2024 | |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | |
dc.description.abstract | This paper proposes an efficient strategy for energy control in the isolated micro grid, comprising photovoltaic and wind power systems with battery storage systems. This strategy presents smart energy management (SEM) based on artificial intelligence techniques (AIT) such as the fuzzy logic controller (FLC). The SEM is designed to manage energy flows throughout the isolated micro grid, by extracting the maximum available energy during deviating constraints such as temperature, solar irradiance and wind speed, while maintaining energy quality and autonomy to meet charging requirements and ensure precise control of the battery's state of charge (SOC) over five states (Very High: SOCV.H, High: SOCH, Medium: SOCM, Low SOCL and Very Low SOCV.L) during charge and discharge. This is a significant improvement over traditional management systems that rely on two SOC states, namely SOCmin and SOCmax. Response behaviors are described and visualized in MATLAB Simulink. © 2024 IEEE. | |
dc.identifier.citation | Serir, C., Rekioua, D., Bensmail, S., Belkaid, A., Colak, I., Belhoul, T., & Mokrani, Z. (2024, May). Managing the Energy flow of a Self-Sustaining Multisource System through intelligent Management Techniques utilizing Artificial Intelligence. In 2024 12th International Conference on Smart Grid (icSmartGrid) (pp. 517-520). IEEE | |
dc.identifier.doi | 10.1109/icSmartGrid61824.2024.10578268 | |
dc.identifier.endpage | 520 | |
dc.identifier.isbn | 979-835036161-2 | |
dc.identifier.scopus | 2-s2.0-85199468415 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 517 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/7224 | |
dc.identifier.wos | WOS:001266130300084 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | Web of Science | |
dc.institutionauthor | Çolak, İlhami | |
dc.institutionauthorid | İlhami Çolak / 0000-0002-6405-5938 | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.relation.ispartof | 12th International Conference on Smart Grid, icSmartGrid 2024 | |
dc.relation.publicationcategory | Diğer | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Artificial İntelligence | |
dc.subject | Energy Management | |
dc.subject | Micro Grid | |
dc.subject | Photovoltaic | |
dc.subject | wind | |
dc.title | Managing the Energy flow of a Self-Sustaining Multisource System through intelligent Management Techniques utilizing Artificial Intelligence | |
dc.type | Other |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- Managing_the_Energy_flow_of_a_Self-Sustaining_Multisource_System_through_intelligent_Management_Techniques_utilizing_Artificial_Intelligence.pdf
- Boyut:
- 4.77 MB
- Biçim:
- Adobe Portable Document Format
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: