A discrete heuristic algorithm with swarm and evolutionary features for data replication problem in distributed systems
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer London Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Availability and accessibility of data objects in a reasonable time is a main issue in distributed systems like cloud computing services. As a result, the reduction of data-related operation times in distributed systems such as data read/write has become a major challenge in the development of these systems. In this regard, replicating the data objects on different servers is one commonly used technique. In general, replica placement plays an essential role in the efficiency of distributed systems and can be implemented statically or dynamically. Estimation of the minimum number of data replicas and the optimal placement of the replicas is an NP-complete optimization problem. Hence, different heuristic algorithms have been proposed for optimal replica placement in distributed systems. Reducing data processing costs as well as the number of replicas, and increasing the reliability of the replica placement algorithms are the main goals of this research. This paper presents a discrete and swarm-evolutionary method using a combination of shuffle-frog leaping and genetic algorithms to data-replica placement problems in distributed systems. The experiments on the standard dataset show that the proposed method reduces data access time by up to 30% with about 14 replicas; whereas the generated replicas by the GA and ACO are, respectively, 24 and 30. The average reduction in data access time by GA and ACO 21% and 18% which shows less efficiency than the SFLA-GA algorithm. Regarding the results, the SFLA-GA converges on the optimal solution before the 10th iteration, which shows the higher performance of the proposed method. Furthermore, the standard deviation among the results obtained by the proposed method on several runs is about 0.029, which is lower than other algorithms. Additionally, the proposed method has a higher success rate than other algorithms in the replica placement problem.
Açıklama
Anahtar Kelimeler
Distributed Systems, Data Access Time, Replica Placement, Sfla-Ga Optimization, Convergence Speed, Number Of Replicas
Kaynak
Neural Computing & Applications
WoS Q Değeri
N/A
Scopus Q Değeri
Q1
Cilt
35
Sayı
31