Endemic Inula Viscosa (L.) Extracts and Their Potential for Both Biosynthesizing Silver Nanoparticles and Anti-microbial Activity

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Science and Business Media Deutschland GmbH

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Green synthesis has recently become one of the most popular methods, as it is both low-budget and environmentally friendly. One of the important considerations in green synthesis is to perform an optimization study because it is necessary to understand how different application conditions (pH, incubation time, metal concentration, etc.) can affect the formation of nanoparticles with different morphology and efficiency, underlining the need for optimization of the process. In this study, firstly the endemic Inula Viscosa (L.) plant, popularly known as cancer grass, was extracted using distillation method. Then, silver nanoparticle (AgNPs) biosynthesis was carried out using the extract of Inula Viscosa (L.) plant. Their physicochemical characterization was conducted using Fourier-transformed infrared spectroscopy (FTIR), UV-visible spectrophotometry (UV-Vis), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS). The time, pH, and AgNO3 concentration, which affect the characteristic and morphological properties of AgNPs, were optimized with the Box Behnken Design (BBD) method, with statistical and experimental design determined by means of a Design Expert statistical software program. The disk diffusion method was also implemented and optimized to increase antimicrobial activity. The study determined the optimal levels of AgNPs, which were green synthesized by Inula Viscosa (L.), provided proof of its antimicrobial properties, and demonstrated their potential to be used as a low-budget aid to new generation clinical treatment methods. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Açıklama

16th Mediterranean Conference on Medical and Biological Engineering and Computing, MEDICON 2023 and 5th International Conference on Medical and Biological Engineering, CMBEBIH 2023 -- 14 September 2023 through 16 September 2023 -- -- 306339

Anahtar Kelimeler

Antimicrobial Activity, Biosynthesis, Inula Viscosa (L.), Silver Nanoparticles

Kaynak

IFMBE Proceedings

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

94

Sayı

Künye