On the index of the Diffie–Hellman mapping

Yükleniyor...
Küçük Resim

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Science and Business Media Deutschland GmbH

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Let ? be a generator of a cyclic group G of order n. The least index of a self-mapping f of G is the index of the largest subgroup U of G such that f(x) x-r is constant on each coset of U for some positive integer r. We determine the index of the univariate Diffie–Hellman mapping d(?a)=?a2, a= 0 , 1 , … , n- 1 , and show that any mapping of small index coincides with d only on a small subset of G. Moreover, we prove similar results for the bivariate Diffie–Hellman mapping D(?a, ?b) = ?ab, a, b= 0 , 1 , … , n- 1. In the special case that G is a subgroup of the multiplicative group of a finite field we present improvements

Açıklama

Anahtar Kelimeler

Cryptography, Cyclic Groups, Cyclotomic Mappings, Diffie–Hellman Mapping, Index

Kaynak

Applicable Algebra in Engineering, Communications and Computing

WoS Q Değeri

Q3

Scopus Q Değeri

Q3

Cilt

Sayı

Künye

Işık, L., & Winterhof, A. (2020). On the index of the Diffie–Hellman mapping. Applicable Algebra in Engineering, Communication and Computing, 1-9.