Design of Tobacco Leaves Classifier Through Fuzzy Clustering-Based Neural Networks With Multiple Histogram Analyses of Images

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ieee-Inst Electrical Electronics Engineers Inc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This article is concerned with designing a tobacco leaves classifier through fuzzy clustering-based neural networks, which leverage multiple histogram analyses of images. The key issue of the study is to recognize high-quality and low-quality tobacco leaves only by using color images obtained from real industrial areas. This study applies multiple histogram analyses from different color spaces as image preprocessing to extract the meaningful features from high-resolution images. Dimensionality reduction is performed through principal component analysis to extract essential features to reduce model complexity and alleviate overfitting problems. In a classifier, we apply fuzzy clustering-based neural networks that incorporate fuzzy clustering techniques, especially fuzzy C-means clustering, along with a cross-entropy loss function and its learning mechanism. The process of setting and training the membership function of node in the hidden layer is substituted with fuzzy C-means clustering. Also, Softmax function produces the model's output in terms of class probabilities. The cost function of the networks is determined using the cross-entropy loss function, while the learning process involves Newton's method-based iterative nonlinear least square error estimation. The experiment validates the competitiveness of the proposed design methodology using real tobacco images obtained from the industry. The performance of the proposed classifier is compared against other classifiers previously reported in the literature to demonstrate its effectiveness.

Açıklama

Anahtar Kelimeler

Image Color Analysis, Histograms, Feature Extraction, Shape, Neural Networks, Principal Component Analysis, Colored Noise, Fuzzy Clustering, Fuzzy Neural Networks, Histogram Analysis, Iterative Nonlinear Least Square Error

Kaynak

Ieee Transactions on Industrial Informatics

WoS Q Değeri

N/A

Scopus Q Değeri

Q1

Cilt

20

Sayı

3

Künye