Practical implementation based on histogram of oriented gradient descriptor combined with deep learning: Towards intelligent monitoring of a photovoltaic power plant with robust faults predictions

dc.authorscopusidİlhami Çolak / 6602990030
dc.authorwosidİlhami Çolak / KGT-0825-2024
dc.contributor.authorHadroug, Nadji
dc.contributor.authorAmari, Amel Sabrine
dc.contributor.authorAlayed, Walaa
dc.contributor.authorIratni, Abdelhamid
dc.contributor.authorHafaifa, Ahmed
dc.contributor.authorÇolak, İlhami
dc.date.accessioned2025-04-18T10:28:57Z
dc.date.available2025-04-18T10:28:57Z
dc.date.issued2025
dc.departmentİstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü
dc.description.abstractThe increasing complexity of photovoltaic (PV) system monitoring underscores the importance of precise fault detection and energy loss prediction. This paper proposes a deep learning-based framework that integrates multiple advanced techniques to accurately detect, localize, and predict faults in PV panels. A pre-trained Convolutional Neural Network (CNN), based on the AlexNet architecture, processes thermal imaging data for precise fault extraction. This facilitates the classification of faults, contributing to improved decision-making in PV system management. To further enhance real-time monitoring, the framework integrates the Histogram of Oriented Gradients (HoG) descriptor with Support Vector Machine (SVM) models, enabling efficient detection and localization of hotspots across the panels. Additionally, the system leverages Long Short-Term Memory (LSTM) networks combined with fuzzy logic to predict panel performance degradation and quantify energy losses caused by detected faults. The learning process relies on the Long-Term Recurrent Convolutional Network (LRCN) to accurately forecast defects by analyzing power efficiency loss rates. Experimental results confirm the effectiveness and reliability of the proposed framework. Achieving an accuracy of 95.45%, with a true positive rate of 91.67% and a true negative rate of 100%, the system demonstrates robust fault detection capabilities. These results highlight the framework's potential to mitigate power losses, ensuring optimal operation of PV systems. This intelligent solution offers a significant advancement in PV system maintenance and monitoring, providing a scalable approach for real-world applications. © 2024 Elsevier Inc.
dc.identifier.citationHadroug, N., Amari, A. S., Alayed, W., Iratni, A., Hafaifa, A., & Colak, I. (2025). Practical implementation based on histogram of oriented gradient descriptor combined with deep learning: Towards intelligent monitoring of a photovoltaic power plant with robust faults predictions. Journal of Industrial Information Integration, 44, 100760.
dc.identifier.doi10.1016/j.jii.2024.100760
dc.identifier.issn2452414X
dc.identifier.scopus2-s2.0-85213868534
dc.identifier.scopusqualityQ1
dc.identifier.urihttp://dx.doi.org/10.1016/j.jii.2024.100760
dc.identifier.urihttps://hdl.handle.net/20.500.12713/7087
dc.identifier.volume44
dc.identifier.wosWOS:001403361400001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWeb of Science
dc.institutionauthorÇolak, İlhami
dc.institutionauthoridİlhami Çolak / 0000-0002-6405-5938
dc.language.isoen
dc.publisherElsevier B.V.
dc.relation.ispartofJournal of Industrial Information Integration
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAlexnet
dc.subjectConvolutional Neural Networks (CNNS)
dc.subjectDeep Learning (DL)
dc.subjectFault Detection and Localization (FDL)
dc.subjectHistogram of Oriented Gradients (HOG)
dc.subjectLong Short-Term Memory Networks (LSTM)
dc.subjectLong-Term Recurrent Convolutional Network (LRCN)
dc.subjectPhotovoltaic System (PV)
dc.subjectSupport Vector Machine (SVM)
dc.titlePractical implementation based on histogram of oriented gradient descriptor combined with deep learning: Towards intelligent monitoring of a photovoltaic power plant with robust faults predictions
dc.typeArticle

Dosyalar

Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: