A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

dc.contributor.authorAad, G.
dc.contributor.authorAbbott, B.
dc.contributor.authorAbbott, D.C.
dc.contributor.authorAbeling, K.
dc.contributor.authorAbidi, S.H.
dc.contributor.authorAboulhorma, A.
dc.contributor.authorÇetin, Serkant Ali
dc.date.accessioned2024-05-19T14:34:32Z
dc.date.available2024-05-19T14:34:32Z
dc.date.issued2022
dc.departmentİstinye Üniversitesien_US
dc.description.abstractThe standard model of particle physics1–4 describes the known fundamental particles and forces that make up our Universe, with the exception of gravity. One of the central features of the standard model is a field that permeates all of space and interacts with fundamental particles5–9. The quantum excitation of this field, known as the Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the standard model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN10,11. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, enabling much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and W and Z bosons—the carriers of the strong, electromagnetic and weak forces—are studied in detail. Interactions with three third-generation matter particles (bottom (b) and top (t) quarks, and tau leptons (?)) are well measured and indications of interactions with a second-generation particle (muons, ?) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the standard model. © 2022, The Author(s).en_US
dc.identifier.doi10.1038/s41586-022-04893-w
dc.identifier.endpage59en_US
dc.identifier.issn0028-0836
dc.identifier.issue7917en_US
dc.identifier.pmid35788192en_US
dc.identifier.scopus2-s2.0-85133776280en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage52en_US
dc.identifier.urihttps://doi.org/10.1038/s41586-022-04893-w
dc.identifier.urihttps://hdl.handle.net/20.500.12713/4507
dc.identifier.volume607en_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherNature Researchen_US
dc.relation.ispartofNatureen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmz20240519_kaen_US
dc.subjectFundamental Particleen_US
dc.subjectArticleen_US
dc.subjectBosonen_US
dc.subjectElementary Particleen_US
dc.subjectGluonen_US
dc.subjectHadronen_US
dc.subjectHumanen_US
dc.subjectLeptonen_US
dc.subjectPhotonen_US
dc.subjectPredictionen_US
dc.subjectQuarken_US
dc.subjectTheoretical Studyen_US
dc.subjectPhysicsen_US
dc.subjectPhysicsen_US
dc.titleA detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discoveryen_US
dc.typeArticleen_US

Files